Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pharmacol Res Perspect ; 11(1): e01052, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36631976

RESUMO

Vinblastine (VBL) is a vinca alkaloid-class cytotoxic chemotherapeutic that causes microtubule disruption and is typically used to treat hematologic malignancies. VBL is characterized by a narrow therapeutic index, with key dose-limiting toxicities being myelosuppression and neurotoxicity. Pharmacokinetics (PK) of VBL is primarily driven by ABCB1-mediated efflux and CYP3A4 metabolism, creating potential for drug-drug interaction. To characterize sources of variability in VBL PK, we developed a physiologically based pharmacokinetic (PBPK) model in Mdr1a/b(-/-) knockout and wild-type mice by incorporating key drivers of PK, including ABCB1 efflux, CYP3A4 metabolism, and tissue-specific tubulin binding, and scaled this model to accurately simulate VBL PK in humans and pet dogs. To investigate the capability of the model to capture interindividual variability in clinical data, virtual populations of humans and pet dogs were generated through Monte Carlo simulation of physiologic and biochemical parameters and compared to the clinical PK data. This model provides a foundation for predictive modeling of VBL PK. The base PBPK model can be further improved with supplemental experimental data identifying drug-drug interactions, ABCB1 polymorphisms and expression, and other sources of physiologic or metabolic variability.


Assuntos
Antineoplásicos , Vimblastina , Humanos , Cães , Camundongos , Animais , Vimblastina/farmacocinética , Citocromo P-450 CYP3A/genética , Antineoplásicos/farmacocinética , Interações Medicamentosas , Transporte Biológico
2.
J Pharmacol Exp Ther ; 376(2): 294-305, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33172973

RESUMO

Lysosomes act as a cellular drug sink for weakly basic, lipophilic (lysosomotropic) xenobiotics, with many instances of lysosomal trapping associated with multiple drug resistance. Lysosomotropic agents have also been shown to activate master lysosomal biogenesis transcription factor EB (TFEB) and ultimately lysosomal biogenesis. We investigated the role of lysosomal biogenesis in the disposition of hydroxychloroquine (HCQ), a hallmark lysosomotropic agent, and observed that modulating the lysosomal volume of human breast cancer cell lines can account for differences in disposition of HCQ. Through use of an in vitro pharmacokinetic (PK) model, we characterized total cellular uptake of HCQ within the duration of static equilibrium (1 hour), as well as extended exposure to HCQ that is subject to dynamic equilibrium (>1 hour), wherein HCQ increases the size of the lysosomal compartment through swelling and TFEB-induced lysosomal biogenesis. In addition, we observe that pretreatment of cell lines with TFEB-activating agent Torin1 contributed to an increase of whole-cell HCQ concentrations by 1.4- to 1.6-fold, which were also characterized by the in vitro PK model. This investigation into the role of lysosomal volume dynamics in lysosomotropic drug disposition, including the ability of HCQ to modify its own disposition, advances our understanding of how chemically similar agents may distribute on the cellular level and examines a key area of lysosomal-mediated multiple drug resistance and drug-drug interaction. SIGNIFICANCE STATEMENT: Hydroxychloroquine is able to modulate its own cellular pharmacokinetic uptake by increasing the cellular lysosomal volume fraction through activation of lysosomal biogenesis master transcription factor EB and through lysosomal swelling. This concept can be applied to many other lysosomotropic drugs that activate transcription factor EB, such as doxorubicin and other tyrosine kinase inhibitor drugs, as these drugs may actively increase their own sequestration within the lysosome to further exacerbate multiple drug resistance and lead to potential acquired resistance.


Assuntos
Antimaláricos/farmacologia , Hidroxicloroquina/farmacologia , Lisossomos/metabolismo , Biogênese de Organelas , Transporte Biológico , Citosol/metabolismo , Humanos , Lisossomos/efeitos dos fármacos , Células MCF-7
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA