Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 167
Filtrar
1.
J Nucl Med ; 64(12): 1910-1917, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37973185

RESUMO

The fibroblast activation protein (FAP) is highly expressed on carcinoma-associated fibroblasts in the stroma of pancreatic cancer and thus is a promising target for imaging and therapy. Preliminary data on PET imaging with radiolabeled FAP inhibitors (FAPIs) demonstrate superior tumor detection. Here we assess the accuracy of FAP-directed PET in patients with pancreatic cancer. Methods: Of 64 patients with suspected or proven pancreatic cancer, 62 (97%) were included in the data analysis of the 68Ga-FAPI PET observational trial (NCT04571086). All of these patients underwent contrast-enhanced CT, and 38 patients additionally underwent 18F-FDG PET. The primary study endpoint was the association of 68Ga-FAPI PET uptake intensity and histopathologic FAP expression. Secondary endpoints were detection rate, diagnostic performance, interreader reproducibility, and change in management. Datasets were interpreted by 2 masked readers. Results: The primary endpoint was met: The association between 68Ga-FAPI SUVmax and histopathologic FAP expression was significant (Spearman r, 0.48; P = 0.04). For histopathology-validated lesions, 68Ga-FAPI PET showed high sensitivity and positive predictive values (PPVs) on per-patient (sensitivity, 100%; PPV, 96.3%) and per-region (sensitivity, 100%; PPV, 97.0%) bases. In a head-to-head comparison versus 18F-FDG or contrast-enhanced CT, 68Ga-FAPI detected more tumor on a per-lesion (84.7% vs. 46.5% vs. 52.9%), per-patient (97.4% vs. 73.7% vs. 92.1%), or per-region (32.6% vs. 18.8% vs. 23.7%) basis, respectively. 68Ga-FAPI PET readers showed substantial overall agreement on the basis of the Fleiss κ: primary κ, 0.77 (range, 0.66-0.88). Minor and major changes in clinical management occurred in 5 patients (8.4%) after 68Ga-FAPI PET. Conclusion: We confirmed an association of 68Ga-FAPI PET SUVmax and histopathologic FAP expression in pancreatic cancer patients. Additionally, we found high detection rate and diagnostic accuracy, superior to those of 18F-FDG PET/CT. 68Ga-FAPI might become a powerful diagnostic tool for pancreatic cancer work-up.


Assuntos
Adenocarcinoma , Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Quinolinas , Humanos , Adenocarcinoma/diagnóstico por imagem , Neoplasias Pancreáticas/diagnóstico por imagem , Radioisótopos de Gálio , Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Reprodutibilidade dos Testes
2.
J Allergy Clin Immunol ; 150(5): 1154-1167, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35792218

RESUMO

BACKGROUND: Hyperinflammation is a life-threatening condition associated with various clinical disorders characterized by excessive immune activation and tissue damage. Multiple cytokines promote the development of hyperinflammation; however, the contribution of IL-10 remains unclear despite emerging speculations for a pathological role. Clinical observations from hemophagocytic lymphohistiocytosis (HLH), a prototypical hyperinflammatory disease, suggest that IL-18 and IL-10 may collectively promote the onset of a hyperinflammatory state. OBJECTIVE: We aimed to investigate the collaborative roles of IL-10 and IL-18 in hyperinflammation. METHODS: A comprehensive plasma cytokine profile for 87 secondary HLH patients was first depicted and analyzed. We then investigated the systemic and cellular effects of coelevated IL-10 and IL-18 in a transgenic mouse model and cultured macrophages. Single-cell RNA sequencing was performed on the monocytes/macrophages isolated from secondary HLH patients to explore the clinical relevance of IL-10/IL-18-mediated cellular signatures. The therapeutic efficacy of IL-10 blockade was tested in HLH mouse models. RESULTS: Excessive circulating IL-10 and IL-18 triggered a lethal hyperinflammatory disease recapitulating HLH-like phenotypes in mice, driving peripheral lymphopenia and a striking shift toward enhanced myelopoiesis in the bone marrow. IL-10 and IL-18 polarized cultured macrophages to a distinct proinflammatory state with pronounced expression of myeloid cell-recruiting chemokines. Transcriptional characterization suggested the IL-10/IL-18-mediated cellular features were clinically relevant with HLH, showing enhanced granzyme expression and proteasome activation in macrophages. IL-10 blockade protected against the lethal disease in HLH mouse models. CONCLUSION: Coelevated IL-10 and IL-18 are sufficient to drive HLH-like hyperinflammatory syndrome, and blocking IL-10 is protective in HLH models.


Assuntos
Interleucina-10 , Interleucina-18 , Linfo-Histiocitose Hemofagocítica , Mielopoese , Animais , Camundongos , Modelos Animais de Doenças , Linfo-Histiocitose Hemofagocítica/patologia
3.
Front Pediatr ; 10: 841051, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35281224

RESUMO

Background: Atypical hemolytic uremic syndrome (aHUS) is an ultra-rare orphan disease caused by dysregulated complement activation resulting in thrombotic microangiopathy. Although complement-mediated endothelial injury predominantly affects the renal microvasculature, extra-renal manifestations are present in a significant proportion of patients. While eculizumab has significantly improved the morbidity and mortality of this rare disease, optimizing therapeutic regimens of this highly expensive drug remains an active area of research in the treatment of aHUS. Case Presentation: This report describes the case of a previously healthy 4 year-old male who presented with rhabdomyolysis preceding the development of aHUS with anuric kidney injury requiring dialysis. Clinical stabilization required increased and more frequent eculizumab doses compared with the standardized weight-based guidelines. In the maintenance phase of his disease, pharmacokinetic analysis indicated adequate eculizumab levels could be maintained with an individualized dosing regimen every 3 weeks, as opposed to standard 2 week dosing, confirmed in this patient over a 4 year follow up period. Cost analyses show that weight-based maintenance dosing costs $312,000 per year, while extending the dosing interval to every 3 weeks would cost $208,000, a savings of $104,000 per year, relative to the cost of $72,000 from more frequent eculizumab dosing during his initial hospitalization to suppress his acute disease. Conclusion: This case exemplifies the potential of severe, multisystem involvement of aHUS presenting with extra-renal manifestations, including rhabdomyolysis as in this case, and highlights the possibility for improved clinical outcomes and higher value care with individualized eculizumab dosing in patients over the course of their disease.

4.
Cell Stem Cell ; 28(3): 424-435.e6, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33232662

RESUMO

Squamous cell carcinoma (SCC) is a global public health burden originating in epidermal stem and progenitor cells (ESPCs) of the skin and mucosa. To understand how genetic risk factors contribute to SCC, studies of ESPC biology are imperative. Children with Fanconi anemia (FA) are a paradigm for extreme SCC susceptibility caused by germline loss-of-function mutations in FA DNA repair pathway genes. To discover epidermal vulnerabilities, patient-derived pluripotent stem cells (PSCs) conditional for the FA pathway were differentiated into ESPCs and PSC-derived epidermal organotypic rafts (PSC-EORs). FA PSC-EORs harbored diminished cell-cell junctions and increased proliferation in the basal cell compartment. Furthermore, desmosome and hemidesmosome defects were identified in the skin of FA patients, and these translated into accelerated blistering following mechanically induced stress. Together, we demonstrate that a critical DNA repair pathway maintains the structure and function of human skin and provide 3D epidermal models wherein SCC prevention can now be explored.


Assuntos
Carcinoma de Células Escamosas , Anemia de Fanconi , Diferenciação Celular , Criança , Reparo do DNA , Anemia de Fanconi/genética , Humanos , Pele
5.
J Neurooncol ; 149(3): 511-522, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33034839

RESUMO

PURPOSE: Cyclin-dependent kinase-retinoblastoma (CDK-RB) pathway is dysregulated in some diffuse intrinsic pontine gliomas (DIPG). We evaluated safety, feasibility, and early efficacy of the CDK4/6-inhibitor ribociclib, administered following radiotherapy in newly-diagnosed DIPG patients. METHODS: Following radiotherapy, eligible patients received ribociclib in 28-day cycles (350 mg/m2; 21 days on/7 days off). Feasibility endpoints included tolerability for at least 6 courses, and a less than 2-week delay in restarting therapy after 1 dose reduction. Early efficacy was measured by 1-year and median overall survival (OS). Patient/parent-by-proxy reported outcomes measurement information system (PROMIS) assessments were completed prospectively. RESULTS: The study included 10 evaluable patients, 9 DIPG and 1 diffuse midline glioma (DMG)-all 3.7 to 19.8 years of age. The median number of courses was 8 (range 3-14). Three patients required dose reduction for grade-4 neutropenia, and 1 discontinued therapy for hematological toxicity following course 4. The most common grade-3/4 toxicity was myelosuppression. After 2 courses, MRI evaluations in 4 patients revealed increased necrotic volume, associated with new neurological symptoms in 3 patients. The 1-year and median OS for DIPG was 89% and 16.1 months (range 10-30), respectively; the DMG patient died at 6 months post-diagnosis. Five patients donated brain tissue and tumor; 3 were RB+ . CONCLUSIONS: Ribociclib administered following radiotherapy is feasible in DIPG and DMG. Increased tumor necrosis may represent a treatment effect. These data warrant further prospective volumetric analyses of tumors with necrosis. Feasibility and stabilization findings support further investigation of ribociclib in combination therapies. TRIAL REGISTRATION: NCT02607124.


Assuntos
Aminopiridinas/uso terapêutico , Neoplasias do Tronco Encefálico/terapia , Quimiorradioterapia/métodos , Glioma Pontino Intrínseco Difuso/terapia , Purinas/uso terapêutico , Adolescente , Adulto , Aminopiridinas/farmacocinética , Neoplasias do Tronco Encefálico/patologia , Criança , Pré-Escolar , Glioma Pontino Intrínseco Difuso/patologia , Feminino , Seguimentos , Humanos , Masculino , Dose Máxima Tolerável , Prognóstico , Purinas/farmacocinética , Distribuição Tecidual , Adulto Jovem
6.
J Mol Diagn ; 22(4): 447-456, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32036090

RESUMO

Detection of low-level somatic mosaicism [alternate allele fraction (AAF) ≤ 10%] in parents of affected individuals with the apparent de novo pathogenic variants enables more accurate estimate of recurrence risk. To date, only a few systematic analyses of low-level parental somatic mosaicism have been performed. Herein, highly sensitive blocker displacement amplification, droplet digital PCR, quantitative PCR, long-range PCR, and array comparative genomic hybridization were applied in families with alveolar capillary dysplasia with misalignment of pulmonary veins. We screened 18 unrelated families with the FOXF1 variant previously determined to be apparent de novo (n = 14), of unknown parental origin (n = 1), or inherited from a parent suspected to be somatic and/or germline mosaic (n = 3). We identified four (22%) families with FOXF1 parental somatic mosaic single-nucleotide variants (n = 3) and copy number variant deletion (n = 1) detected in parental blood samples and an AAF ranging between 0.03% and 19%. In one family, mosaic allele ratio in tissues originating from three germ layers ranged between <0.03% and 0.65%. Because the ratio of parental somatic mosaicism have significant implications for the recurrence risk, this study further implies the importance of a systematic screening of parental samples for low-level and very-low-level (AAF ≤ 1%) somatic mosaicism using methods that are more sensitive than those routinely applied in diagnostics.


Assuntos
Fatores de Transcrição Forkhead/genética , Mosaicismo , Síndrome da Persistência do Padrão de Circulação Fetal/diagnóstico , Síndrome da Persistência do Padrão de Circulação Fetal/genética , Alvéolos Pulmonares/anormalidades , Veias Pulmonares/anormalidades , Alelos , Substituição de Aminoácidos , Variações do Número de Cópias de DNA , Análise Mutacional de DNA , Feminino , Genótipo , Humanos , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real
7.
Cancers (Basel) ; 11(8)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434318

RESUMO

The small GTPase RAC1B functions as a powerful inhibitor of transforming growth factor (TGF)-ß1-induced epithelial-mesenchymal transition, cell motility, and growth arrest in pancreatic epithelial cells. Previous work has shown that RAC1B downregulates the TGF-ß type I receptor ALK5, but the molecular details of this process have remained unclear. Here, we hypothesized that RAC1B-mediated suppression of activin receptor-like kinase 5 (ALK5) involves proteinase-activated receptor 2 (PAR2), a G protein-coupled receptor encoded by F2RL1 that is crucial for sustaining ALK5 expression. We found in pancreatic carcinoma Panc1 cells that PAR2 is upregulated by TGF-ß1 in an ALK5-dependent manner and that siRNA-mediated knockdown of RAC1B increased both basal and TGF-ß1-induced expression of PAR2. Further, the simultaneous knockdown of PAR2 and RAC1B rescued Panc1 cells from a RAC1B knockdown-induced increase in ALK5 abundance and the ALK5-mediated increase in TGF-ß1-induced migratory activity. Conversely, Panc1 cells with stable ectopic expression of RAC1B displayed reduced ALK5 expression, an impaired upregulation of PAR2, and a reduced migratory responsiveness to TGF-ß1 stimulation. However, these effects could be reversed by ectopic overexpression of PAR2. Moreover, the knockdown of PAR2 alone in Panc1 cells and HaCaT keratinocytes phenocopied RAC1B's ability to suppress ALK5 abundance and TGF-ß1-induced chemokinesis and growth inhibition. Lastly, we found that the RAC1B knockdown-induced increase in TGF-ß1-induced PAR2 mRNA expression was sensitive to pharmacological inhibition of MEK-ERK signaling. Our data show that in pancreatic and skin epithelial cells, downregulation of ALK5 activity by RAC1B is secondary to suppression of F2RL1/PAR2 expression. Since F2RL1 itself is a TGF-ß target gene and its upregulation by TGF-ß1 is mediated by ALK5 and MEK-ERK signaling, we suggest the existence of a feed-forward signaling loop involving ALK5 and PAR2 that is efficiently suppressed by RAC1B to restrict TGF-ß-driven cell motility and growth inhibition.

8.
Cancers (Basel) ; 11(5)2019 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-31108998

RESUMO

The small GTPase Ras-related C3 botulinum toxin substrate 1B (RAC1B) has been shown previously by RNA interference-mediated knockdown (KD) to function as a powerful inhibitor of transforming growth factor (TGF)-ß1-induced cell migration and epithelial-mesenchymal transition in epithelial cells, but the underlying mechanism has remained enigmatic. Using pancreatic carcinoma cells, we show that both KD and Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9-mediated knockout (KO) of RAC1B increased the expression of the TGF-ß type I receptor ALK5 (activin receptor-like kinase 5), but this effect was more pronounced in CRISPR-KO cells. Of note, in KO, but not KD cells, ALK5 upregulation was associated with resensitization of TGFBR1 to induction by TGF-ß1 stimulation. RAC1B KO also increased TGF-ß1-induced C-terminal SMAD3 phosphorylation, SMAD3 transcriptional activity, growth inhibition, and cell migration. The KD of ALK5 expression by RNA interference or inactivation of the ALK5 kinase activity by dominant-negative interference or ATP-competitive inhibition rescued the cells from the RAC1B KD/KO-mediated increase in TGF-ß1-induced cell migration, whereas the ectopic expression of kinase-active ALK5 mimicked this RAC1B KD/KO effect. We conclude that RAC1B downregulates the abundance of ALK5 and SMAD3 signaling, thereby attenuating TGF-ß/SMAD3-driven cellular responses, such as growth inhibition and cell motility.

9.
Sci Rep ; 9(1): 5571, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30944381

RESUMO

Gaucher disease is caused by mutations in GBA1 encoding acid ß-glucosidase (GCase). Saposin C enhances GCase activity and protects GCase from intracellular proteolysis. Structure simulations indicated that the mutant GCases, N370S (0 S), V394L (4L) and D409V(9V)/H(9H), had altered function. To investigate the in vivo function of Gba1 mutants, mouse models were generated by backcrossing the above homozygous mutant GCase mice into Saposin C deficient (C*) mice. Without saposin C, the mutant GCase activities in the resultant mouse tissues were reduced by ~50% compared with those in the presence of Saposin C. In contrast to 9H and 4L mice that have normal histology and life span, the 9H;C* and 4L;C* mice had shorter life spans. 9H;C* mice developed significant visceral glucosylceramide (GC) and glucosylsphingosine (GS) accumulation (GC¼GS) and storage macrophages, but lesser GC in the brain, compared to 4L;C* mice that presents with a severe neuronopathic phenotype and accumulated GC and GS primarily in the brain. Unlike 9V mice that developed normally for over a year, 9V;C* pups had a lethal skin defect as did 0S;C* mice resembled that of 0S mice. These variant Gaucher disease mouse models presented a mutation specific phenotype and underscored the in vivo role of Saposin C in the modulation of Gaucher disease.


Assuntos
Doença de Gaucher/genética , Glucosilceramidase/genética , Mutação/genética , Saposinas/deficiência , beta-Glucosidase/genética , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Glucosilceramidas/genética , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo
10.
Am J Med Genet A ; 179(6): 1010-1014, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30895720

RESUMO

Orofaciodigital syndrome type I and X-linked recessive Joubert syndrome are known ciliopathic disorders that are caused by pathogenic variants in OFD1 gene. Endocrine system involvement with these conditions is not well described. We present the first report of a newborn male with a novel hemizygous variant in OFD1 gene c.515T>C, (p.Leu172Pro) resulting in X-linked Joubert syndrome and orofaciodigital features with complete pituitary gland aplasia and subsequent severe hypoplasia of peripheral endocrine glands. This clinical report expands the phenotypic spectrum of endocrine system involvement in OFD1-related disorders and suggests that OFD1 gene may be related to pituitary gland development.


Assuntos
Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Cerebelo/anormalidades , Anormalidades do Olho/diagnóstico , Anormalidades do Olho/genética , Genes Ligados ao Cromossomo X , Doenças Renais Císticas/diagnóstico , Doenças Renais Císticas/genética , Mutação , Fenótipo , Proteínas/genética , Retina/anormalidades , Alelos , Genótipo , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Síndromes Orofaciodigitais/diagnóstico , Síndromes Orofaciodigitais/genética , Linhagem , Hipófise/anormalidades , Radiografia , Sequenciamento do Exoma
11.
Pediatr Nephrol ; 34(1): 117-128, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30159624

RESUMO

OBJECTIVES: To delineate urine biomarkers that reflect kidney structural damage and predict renal functional decline in pediatric lupus nephritis (LN). METHODS: In this prospective study, we evaluated kidney biopsies and urine samples of 89 patients with pediatric LN. Urinary levels of 10 biomarkers [adiponectin, ceruloplasmin, kidney injury molecule-1, monocyte chemotactic protein-1, neutrophil gelatinase-associated lipocalin, osteopontin, transforming growth factor-ß (TGFß), vitamin-D binding protein, liver fatty acid binding protein (LFABP), and transferrin] were measured. Regression analysis was used to identify individual and combinations of biomarkers that determine LN damage status [NIH-chronicity index (NIH-CI) score ≤ 1 vs. ≥ 2] both individually and in combination, and biomarker levels were compared for patients with vs. without renal functional decline, i.e., a 20% reduction of the glomerular filtration rate (GFR) within 12 months of a kidney biopsy. RESULTS: Adiponectin, LFABP, and osteopontin levels differed significantly with select histological damage features considered in the NIH-CI. The GFR was associated with NIH-CI scores [Pearson correlation coefficient (r) = - 0.49; p < 0.0001] but not proteinuria (r = 0.20; p > 0.05). Similar to the GFR [area under the ROC curve (AUC) = 0.72; p < 0.01], combinations of osteopontin and adiponectin levels showed moderate accuracy [AUC = 0.75; p = 0.003] in discriminating patients by LN damage status. Renal functional decline occurred more commonly with continuously higher levels of the biomarkers, especially of TGFß, transferrin, and LFABP. CONCLUSION: In combination, urinary levels of adiponectin and osteopontin predict chronic LN damage with similar accuracy as the GFR. Ongoing LN activity as reflected by high levels of LN activity biomarkers heralds renal functional decline. KEY MESSAGES: • Levels of osteopontin and adiponectin measured at the time of kidney biopsy are good predictors of histological damage with lupus nephritis. • Only about 20% of children with substantial kidney damage from lupus nephritis will have an abnormally low urine creatinine clearance. • Continuously high levels of biomarkers reflecting lupus nephritis activity are risk factors of declining renal function.


Assuntos
Falência Renal Crônica/diagnóstico , Rim/fisiopatologia , Nefrite Lúpica/fisiopatologia , Adiponectina/urina , Adolescente , Área Sob a Curva , Biomarcadores/urina , Biópsia , Criança , Progressão da Doença , Feminino , Humanos , Rim/patologia , Falência Renal Crônica/fisiopatologia , Falência Renal Crônica/urina , Testes de Função Renal/métodos , Estudos Longitudinais , Nefrite Lúpica/patologia , Nefrite Lúpica/urina , Masculino , Osteopontina/urina , Prognóstico , Estudos Prospectivos
12.
Rheumatology (Oxford) ; 58(2): 321-330, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285245

RESUMO

Objectives: We used an unbiased proteomics approach to identify candidate urine biomarkers (CUBMs) predictive of LN chronicity and pursued their validation in a larger cohort. Methods: In this cross-sectional pilot study, we selected urine collected at kidney biopsy from 20 children with varying levels of LN damage (discovery cohort) and performed proteomic analysis using isobaric tags for relative and absolute quantification (iTRAQ). We identified differentially excreted proteins based on degree of LN chronicity and sought to distinguish markers exhibiting different relative expression patterns using hierarchically clustered log10-normalized relative abundance data with linked and distinct functions by biological network analyses. For each CUBM, we performed specific ELISAs on urine from a validation cohort (n = 41) and analysis of variance to detect differences between LN chronicity, with LN activity adjustment. We evaluated for CUBM expression in LN biopsies with immunohistochemistry. Results: iTRAQ detected 112 proteins in urine from the discovery cohort, 51 quantifiable in all replicates. Simple analysis of variance revealed four differentially expressed, chronicity-correlated proteins (P-values < 0.05). Further correlation and network analyses led to selection of seven CUBMs for LN chronicity. In the validation cohort, none of the CUBMs distinguished LN chronicity degree; however, urine SERPINA3 demonstrated a moderate positive correlation with LN histological activity. Immunohistochemistry further demonstrated SERPINA3 staining in proximal tubular epithelial and endothelial cells. Conclusion: We identified SERPINA3, a known inhibitor of neutrophil cathepsin G and angiotensin II production, as a potential urine biomarker to help quantify LN activity.


Assuntos
Nefrite Lúpica/diagnóstico , Serpinas/urina , Adolescente , Adulto , Biomarcadores/urina , Biópsia , Criança , Estudos Transversais , Feminino , Humanos , Rim/patologia , Nefrite Lúpica/complicações , Nefrite Lúpica/patologia , Masculino , Projetos Piloto , Proteinúria/diagnóstico , Proteinúria/etiologia , Proteômica/métodos , Adulto Jovem
13.
PLoS One ; 13(12): e0209235, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30589865

RESUMO

Fanconi anemia is a rare genome instability disorder with extreme susceptibility to squamous cell carcinoma of the head and neck and anogenital tract. In patients with this inherited disorder, the risk of head and neck cancer is 800-fold higher than in the general population, a finding which might suggest a viral etiology. Here, we analyzed the possible contribution of human polyomaviruses to FA-associated head and neck squamous cell carcinoma (HNSCC) by a pan-polyomavirus immunohistochemistry test which detects the T antigens of all known human polyomaviruses. We observed weak reactivity in 17% of the HNSCC samples suggesting that based on classical criteria, human polyomaviruses are not causally related to squamous cell carcinomas analyzed in this study.


Assuntos
Anemia de Fanconi/virologia , Polyomavirus , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Linhagem Celular Tumoral , Anemia de Fanconi/imunologia , Anemia de Fanconi/patologia , Células HEK293 , Humanos , Infecções por Polyomavirus/imunologia , Infecções por Polyomavirus/patologia , Infecções por Polyomavirus/virologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/imunologia , Carcinoma de Células Escamosas de Cabeça e Pescoço/patologia , Infecções Tumorais por Vírus/imunologia , Infecções Tumorais por Vírus/patologia , Infecções Tumorais por Vírus/virologia
14.
Cancer Discov ; 8(11): 1438-1457, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30139811

RESUMO

Myelodysplastic syndromes (MDS) are heterogeneous hematopoietic disorders that are incurable with conventional therapy. Their incidence is increasing with global population aging. Although many genetic, epigenetic, splicing, and metabolic aberrations have been identified in patients with MDS, their clinical features are quite similar. Here, we show that hypoxia-independent activation of hypoxia-inducible factor 1α (HIF1A) signaling is both necessary and sufficient to induce dysplastic and cytopenic MDS phenotypes. The HIF1A transcriptional signature is generally activated in MDS patient bone marrow stem/progenitors. Major MDS-associated mutations (Dnmt3a, Tet2, Asxl1, Runx1, and Mll1) activate the HIF1A signature. Although inducible activation of HIF1A signaling in hematopoietic cells is sufficient to induce MDS phenotypes, both genetic and chemical inhibition of HIF1A signaling rescues MDS phenotypes in a mouse model of MDS. These findings reveal HIF1A as a central pathobiologic mediator of MDS and as an effective therapeutic target for a broad spectrum of patients with MDS.Significance: We showed that dysregulation of HIF1A signaling could generate the clinically relevant diversity of MDS phenotypes by functioning as a signaling funnel for MDS driver mutations. This could resolve the disconnection between genotypes and phenotypes and provide a new clue as to how a variety of driver mutations cause common MDS phenotypes. Cancer Discov; 8(11); 1438-57. ©2018 AACR. See related commentary by Chen and Steidl, p. 1355 This article is highlighted in the In This Issue feature, p. 1333.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/fisiologia , Histona-Lisina N-Metiltransferase/fisiologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/fisiologia , Hipóxia/fisiopatologia , Síndromes Mielodisplásicas/patologia , Proteína de Leucina Linfoide-Mieloide/fisiologia , Animais , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Metaboloma , Camundongos , Camundongos Knockout , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo
15.
Proc Natl Acad Sci U S A ; 115(23): 5998-6003, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784808

RESUMO

Nephrogenesis concludes by the 36th week of gestation in humans and by the third day of postnatal life in mice. Extending the nephrogenic period may reduce the onset of adult renal and cardiovascular disease associated with low nephron numbers. We conditionally deleted either Mtor or Tsc1 (coding for hamartin, an inhibitor of Mtor) in renal progenitor cells. Loss of one Mtor allele caused a reduction in nephron numbers; complete deletion led to severe paucity of glomeruli in the kidney resulting in early death after birth. By contrast, loss of one Tsc1 allele from renal progenitors resulted in a 25% increase in nephron endowment with no adverse effects. Increased progenitor engraftment rates ex vivo relative to controls correlated with prolonged nephrogenesis through the fourth postnatal day. Complete loss of both Tsc1 alleles in renal progenitors led to a lethal tubular lesion. The hamartin phenotypes are not dependent on the inhibitory effect of TSC on the Mtor complex but are dependent on Raptor.


Assuntos
Néfrons , Organogênese/fisiologia , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Néfrons/química , Néfrons/citologia , Néfrons/crescimento & desenvolvimento , Néfrons/fisiologia , Serina-Treonina Quinases TOR/genética , Proteína 1 do Complexo Esclerose Tuberosa
16.
Dev Dyn ; 247(3): 451-461, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28390160

RESUMO

This article focuses on the role of Rho family GTPases, particularly Rac1 and Rac1b in TGF-ß-induced epithelial-mesenchymal transition (EMT) and EMT-associated responses such as cell migration, invasion, and metastasis in cancer. EMT is considered a prerequisite for cells to adopt a motile and invasive phenotype and eventually become metastatic. A major regulator of EMT and metastasis in cancer is TGF-ß, and its specific functions on tumor cells are mediated beside Smad proteins and mitogen-activated protein kinases (MAPKs) by small GTPases of the Rho/Rac1 family. Available data point to extensive signaling crosstalk between TGF-ß and various Rho GTPases, and in particular a synergistic role of Rho and Rac1 during EMT and cell motility in normal and neoplastic epithelial cells. In contrast, the Rac1-related isoform, Rac1b, emerges as an endogenous inhibitor of Rac1 in TGF-ß signaling, at least in pancreatic carcinoma cells. Given the tumor-promoting role of TGF-ß in late-stage carcinomas and the intimate crosstalk of Rho/Rac1/Rac1b and TGF-ß signaling in various tumor cell responses, targeting specific Rho GTPases may allow for selective interference with prooncogenic TGF-ß responses to aid in anticancer treatments. Developmental Dynamics 247:451-461, 2018. © 2017 Wiley Periodicals, Inc.


Assuntos
Transição Epitelial-Mesenquimal , Proteínas Monoméricas de Ligação ao GTP/fisiologia , Neoplasias/patologia , Fator de Crescimento Transformador beta/fisiologia , Movimento Celular , Receptor Cross-Talk , Fator de Crescimento Transformador beta/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo
17.
FASEB J ; 32(4): 2073-2085, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29203592

RESUMO

Myotonic dystrophy type 1 (DM1) is a progressive neuromuscular disease caused by expanded CUG repeats, which misregulate RNA metabolism through several RNA-binding proteins, including CUG-binding protein/CUGBP1 elav-like factor 1 (CUGBP1/CELF1) and muscleblind 1 protein. Mutant CUG repeats elevate CUGBP1 and alter CUGBP1 activity via a glycogen synthase kinase 3ß (GSK3ß)-cyclin D3-cyclin D-dependent kinase 4 (CDK4) signaling pathway. Inhibition of GSK3ß corrects abnormal activity of CUGBP1 in DM1 mice [human skeletal actin mRNA, containing long repeats ( HSALR) model]. Here, we show that the inhibition of GSK3ß in young HSALR mice prevents development of DM1 muscle pathology. Skeletal muscle in 1-yr-old HSALR mice, treated at 1.5 mo for 6 wk with the inhibitors of GSK3, exhibits high fiber density, corrected atrophy, normal fiber size, with reduced central nuclei and normalized grip strength. Because CUG-GSK3ß-cyclin D3-CDK4 converts the active form of CUGBP1 into a form of translational repressor, we examined the contribution of CUGBP1 in myogenesis using Celf1 knockout mice. We found that a loss of CUGBP1 disrupts myogenesis, affecting genes that regulate differentiation and the extracellular matrix. Proteins of those pathways are also misregulated in young HSALR mice and in muscle biopsies of patients with congenital DM1. These findings suggest that the correction of GSK3ß-CUGBP1 pathway in young HSALR mice might have a positive effect on the myogenesis over time.-Wei, C., Stock, L., Valanejad, L., Zalewski, Z. A., Karns, R., Puymirat, J., Nelson, D., Witte, D., Woodgett, J., Timchenko, N. A., Timchenko, L. Correction of GSK3ß at young age prevents muscle pathology in mice with myotonic dystrophy type 1.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Distrofia Miotônica/tratamento farmacológico , Animais , Proteínas CELF1/genética , Células Cultivadas , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Masculino , Camundongos , Desenvolvimento Muscular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Distrofia Miotônica/prevenção & controle , Tiadiazóis/farmacologia , Tiadiazóis/uso terapêutico
18.
Sci Rep ; 7(1): 17313, 2017 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-29229918

RESUMO

Prompted by earlier findings that the Rac1-related isoform Rac1b inhibits transforming growth factor (TGF)-ß1-induced canonical Smad signalling, we studied here whether Rac1b also impacts TGF-ß1-dependent non-Smad signalling such as the MKK6-p38 and MEK-ERK mitogen-activated protein kinase (MAPK) pathways and epithelial-mesenchymal transition (EMT). Transient depletion of Rac1b protein in pancreatic cancer cells by RNA interference increased the extent and duration of TGF-ß1-induced phosphorylation of p38 MAPK in a Smad4-independent manner. Rac1b depletion also strongly increased basal ERK activation - independent of the kinase function of the TGF-ß type I receptor ALK5 - and sensitised cells towards further upregulation of phospho-ERK levels by TGF-ß1, while ectopic overexpression of Rac1b had the reverse effect. Rac1b depletion increased an EMT phenotype as evidenced by cell morphology, gene expression of EMT markers, cell migration and growth inhibition. Inhibition of MKK6-p38 or MEK-ERK signalling partially relieved the Rac1b depletion-dependent increase in TGF-ß1-induced gene expression and cell migration. Rac1b depletion also enhanced TGF-ß1 autoinduction of crucial TGF-ß pathway components and decreased that of TGF-ß pathway inhibitors. Our results show that Rac1b antagonises TGF-ß1-dependent EMT by inhibiting MKK6-p38 and MEK-ERK signalling and by controlling gene expression in a way that favors attenuation of TGF-ß signalling.


Assuntos
Transição Epitelial-Mesenquimal , MAP Quinase Quinase 6/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neoplasias Pancreáticas/patologia , Fator de Crescimento Transformador beta1/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Fosforilação , Transdução de Sinais , Células Tumorais Cultivadas
19.
Int J Mol Sci ; 18(12)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29261154

RESUMO

BACKGROUND: Recently, the expression of proteinase-activated receptor 2 (PAR2) has been shown to be essential for activin receptor-like kinase 5 (ALK5)/SMAD-mediated signaling and cell migration by transforming growth factor (TGF)-ß1. However, it is not known whether activation of non-SMAD TGF-ß signaling (e.g., RAS-RAF-MEK-extracellular signal-regulated kinase (ERK) signaling) is required for cell migration and whether it is also dependent on PAR2. METHODS: RNA interference was used to deplete cells of PAR2, followed by xCELLigence technology to measure cell migration, phospho-immunoblotting to assess ERK1/2 activation, and co-immunoprecipitation to detect a PAR2-ALK5 physical interaction. RESULTS: Inhibition of ERK signaling with the MEK inhibitor U0126 blunted the ability of TGF-ß1 to induce migration in pancreatic cancer Panc1 cells. ERK activation in response to PAR2 agonistic peptide (PAR2-AP) was strong and rapid, while it was moderate and delayed in response to TGF-ß1. Basal and TGF-ß1-dependent ERK, but not SMAD activation, was blocked by U0126 in Panc1 and other cell types indicating that ERK activation is downstream or independent of SMAD signaling. Moreover, cellular depletion of PAR2 in HaCaT cells strongly inhibited TGF-ß1-induced ERK activation, while the biased PAR2 agonist GB88 at 10 and 100 µM potentiated TGF-ß1-dependent ERK activation and cell migration. Finally, we provide evidence for a physical interaction between PAR2 and ALK5. Our data show that both PAR2-AP- and TGF-ß1-induced cell migration depend on ERK activation, that PAR2 expression is crucial for TGF-ß1-induced ERK activation, and that the functional cooperation of PAR2 and TGF-ß1 involves a physical interaction between PAR2 and ALK5.


Assuntos
Movimento Celular , Sistema de Sinalização das MAP Quinases , Receptores Acoplados a Proteínas G/metabolismo , Linhagem Celular Tumoral , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor PAR-2 , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Fator de Crescimento Transformador beta1/metabolismo
20.
Int J Mol Sci ; 18(11)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29165389

RESUMO

The G protein-coupled receptor proteinase-activated receptor 2 (PAR2) has been implicated in various aspects of cellular physiology including inflammation, obesity and cancer. In cancer, it usually acts as a driver of cancer progression in various tumor types by promoting invasion and metastasis in response to activation by serine proteinases. Recently, we discovered another mode through which PAR2 may enhance tumorigenesis: crosstalk with transforming growth factor-ß (TGF-ß) signaling to promote TGF-ß1-induced cell migration/invasion and invasion-associated gene expression in ductal pancreatic adenocarcinoma (PDAC) cells. In this chapter, we review what is known about the cellular TGF-ß responses and signaling pathways affected by PAR2 expression, the signaling activities of PAR2 required for promoting TGF-ß signaling, and the potential molecular mechanism(s) that underlie(s) the TGF-ß signaling-promoting effect. Since PAR2 is activated through various serine proteinases and biased agonists, it may couple TGF-ß signaling to a diverse range of other physiological processes that may or may not predispose cells to cancer development such as local inflammation, systemic coagulation and pathogen infection.


Assuntos
Neoplasias/metabolismo , Neoplasias/patologia , Receptor PAR-2/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Humanos , Ligação Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptor PAR-2/química , Receptor do Fator de Crescimento Transformador beta Tipo I , Receptores de Fatores de Crescimento Transformadores beta/genética , Receptores de Fatores de Crescimento Transformadores beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...