Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Phys Imaging Radiat Oncol ; 30: 100575, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38644934

RESUMO

Background and purpose: Despite hardware acceleration, state-of-the-art Monte Carlo (MC) dose engines require considerable computation time to reduce stochastic noise. We developed a deep learning (DL) based dose engine reaching high accuracy at strongly reduced computation times. Materials and methods: Radiotherapy treatment plans and computed tomography scans were collected for 350 treatments in a variety of tumor sites. Dose distributions were computed using a MC dose engine for ∼30,000 separate segments at 6 MV and 10 MV beam energies, both flattened and flattening filter free. For dynamic arcs these explicitly incorporated the leaf, jaw and gantry motions during dose delivery. A neural network was developed, combining two-dimensional convolution and recurrence using 64 hidden channels. Parameters were trained to minimize the mean squared log error loss between the MC computed dose and the model output. Full dose distributions were reconstructed for 100 additional treatment plans. Gamma analyses were performed to assess accuracy. Results: DL dose evaluation was on average 82 times faster than MC computation at a 1 % accuracy setting. In voxels receiving at least 10 % of the maximum dose the overall global gamma pass rate using a 2 % and 2 mm criterion was 99.6 %, while mean local gamma values were accurate within 2 %. In the high dose region over 50 % of maximum the mean local gamma approached a 1 % accuracy. Conclusions: A DL based dose engine was implemented, able to accurately reproduce MC computed dynamic arc radiotherapy dose distributions at high speed.

2.
Sci Rep ; 13(1): 18897, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919325

RESUMO

Extent of resection after surgery is one of the main prognostic factors for patients diagnosed with glioblastoma. To achieve this, accurate segmentation and classification of residual tumor from post-operative MR images is essential. The current standard method for estimating it is subject to high inter- and intra-rater variability, and an automated method for segmentation of residual tumor in early post-operative MRI could lead to a more accurate estimation of extent of resection. In this study, two state-of-the-art neural network architectures for pre-operative segmentation were trained for the task. The models were extensively validated on a multicenter dataset with nearly 1000 patients, from 12 hospitals in Europe and the United States. The best performance achieved was a 61% Dice score, and the best classification performance was about 80% balanced accuracy, with a demonstrated ability to generalize across hospitals. In addition, the segmentation performance of the best models was on par with human expert raters. The predicted segmentations can be used to accurately classify the patients into those with residual tumor, and those with gross total resection.


Assuntos
Glioblastoma , Humanos , Europa (Continente) , Glioblastoma/diagnóstico por imagem , Glioblastoma/cirurgia , Glioblastoma/patologia , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Neoplasia Residual/diagnóstico por imagem , Redes Neurais de Computação , Estudos Multicêntricos como Assunto , Conjuntos de Dados como Assunto
3.
Radiother Oncol ; 188: 109868, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37683811

RESUMO

Voxel-based analysis (VBA) allows the full, 3-dimensional, dose distribution to be considered in radiotherapy outcome analysis. This provides new insights into anatomical variability of pathophysiology and radiosensitivity by removing the need for a priori definition of organs assumed to drive the dose response associated with patient outcomes. This approach may offer powerful biological insights demonstrating the heterogeneity of the radiobiology across tissues and potential associations of the radiotherapy dose with further factors. As this methodological approach becomes established, consideration needs to be given to translating VBA results to clinical implementation for patient benefit. Here, we present a comprehensive roadmap for VBA clinical translation. Technical validation needs to demonstrate robustness to methodology, where clinical validation must show generalisability to external datasets and link to a plausible pathophysiological hypothesis. Finally, clinical utility requires demonstration of potential benefit for patients in order for successful translation to be feasible. For each step on the roadmap, key considerations are discussed and recommendations provided for best practice.

4.
Radiother Oncol ; 177: 214-221, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36410547

RESUMO

BACKGROUND AND PURPOSE: Neoadjuvant chemoradiotherapy (nCRT) is used in locally recurrent rectal cancer (LRRC) to increase chances of a radical surgical resection. Delineation in LRRC is hampered by complex disease presentation and limited clinical exposure. Within the PelvEx II trial, evaluating the benefit of chemotherapy preceding nCRT for LRRC, a delineation guideline was developed by an expert LRRC team. MATERIALS AND METHODS: Eight radiation oncologists, from Dutch and Swedish expert centres, participated in two meetings, delineating GTV and CTV in six cases. Regions at-risk for re-recurrence or irradical resection were identified by eleven expert surgeons and one expert radiologist. Target volumes were evaluated multidisciplinary. Inter-observer variation was analysed. RESULTS: Inter-observer variation in delineation of LRRC appeared large. Multidisciplinary evaluation per case is beneficial in determining target volumes. The following consensus regarding target volumes was reached. GTV should encompass all tumour, including extension into OAR if applicable. If the tumour is in fibrosis, GTV should encompass the entire fibrotic area. Only if tumour can clearly be distinguished from fibrosis, GTV may be reduced, as long as the entire fibrotic area is covered by the CTV. CTV is GTV with a 1 cm margin and should encompass all at-risk regions for irradical resection or re-recurrence. CTV should not be adjusted towards other organs. Multifocal recurrences should be encompassed in one CTV. Elective nodal delineation is only advised in radiotherapy-naïve patients. CONCLUSION: This study provides a first consensus-based delineation guideline for LRRC. Analyses of re-recurrences is needed to understand disease behaviour and to optimize delineation guidelines accordingly.


Assuntos
Recidiva Local de Neoplasia , Neoplasias Retais , Humanos , Consenso , Neoplasias Retais/diagnóstico por imagem , Neoplasias Retais/terapia , Variações Dependentes do Observador , Fibrose , Planejamento da Radioterapia Assistida por Computador
5.
Front Neurol ; 13: 932219, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968292

RESUMO

For patients suffering from brain tumor, prognosis estimation and treatment decisions are made by a multidisciplinary team based on a set of preoperative MR scans. Currently, the lack of standardized and automatic methods for tumor detection and generation of clinical reports, incorporating a wide range of tumor characteristics, represents a major hurdle. In this study, we investigate the most occurring brain tumor types: glioblastomas, lower grade gliomas, meningiomas, and metastases, through four cohorts of up to 4,000 patients. Tumor segmentation models were trained using the AGU-Net architecture with different preprocessing steps and protocols. Segmentation performances were assessed in-depth using a wide-range of voxel and patient-wise metrics covering volume, distance, and probabilistic aspects. Finally, two software solutions have been developed, enabling an easy use of the trained models and standardized generation of clinical reports: Raidionics and Raidionics-Slicer. Segmentation performances were quite homogeneous across the four different brain tumor types, with an average true positive Dice ranging between 80 and 90%, patient-wise recall between 88 and 98%, and patient-wise precision around 95%. In conjunction to Dice, the identified most relevant other metrics were the relative absolute volume difference, the variation of information, and the Hausdorff, Mahalanobis, and object average symmetric surface distances. With our Raidionics software, running on a desktop computer with CPU support, tumor segmentation can be performed in 16-54 s depending on the dimensions of the MRI volume. For the generation of a standardized clinical report, including the tumor segmentation and features computation, 5-15 min are necessary. All trained models have been made open-access together with the source code for both software solutions and validation metrics computation. In the future, a method to convert results from a set of metrics into a final single score would be highly desirable for easier ranking across trained models. In addition, an automatic classification of the brain tumor type would be necessary to replace manual user input. Finally, the inclusion of post-operative segmentation in both software solutions will be key for generating complete post-operative standardized clinical reports.

6.
J Neurosurg ; 136(1): 45-55, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243150

RESUMO

OBJECTIVE: The aim of glioblastoma surgery is to maximize the extent of resection while preserving functional integrity. Standards are lacking for surgical decision-making, and previous studies indicate treatment variations. These shortcomings reflect the need to evaluate larger populations from different care teams. In this study, the authors used probability maps to quantify and compare surgical decision-making throughout the brain by 12 neurosurgical teams for patients with glioblastoma. METHODS: The study included all adult patients who underwent first-time glioblastoma surgery in 2012-2013 and were treated by 1 of the 12 participating neurosurgical teams. Voxel-wise probability maps of tumor location, biopsy, and resection were constructed for each team to identify and compare patient treatment variations. Brain regions with different biopsy and resection results between teams were identified and analyzed for patient functional outcome and survival. RESULTS: The study cohort consisted of 1087 patients, of whom 363 underwent a biopsy and 724 a resection. Biopsy and resection decisions were generally comparable between teams, providing benchmarks for probability maps of resections and biopsies for glioblastoma. Differences in biopsy rates were identified for the right superior frontal gyrus and indicated variation in biopsy decisions. Differences in resection rates were identified for the left superior parietal lobule, indicating variations in resection decisions. CONCLUSIONS: Probability maps of glioblastoma surgery enabled capture of clinical practice decisions and indicated that teams generally agreed on which region to biopsy or to resect. However, treatment variations reflecting clinical dilemmas were observed and pinpointed by using the probability maps, which could therefore be useful for quality-of-care discussions between surgical teams for patients with glioblastoma.


Assuntos
Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Neurocirurgiões , Procedimentos Neurocirúrgicos/métodos , Adulto , Idoso , Biópsia , Mapeamento Encefálico , Tomada de Decisão Clínica , Estudos de Coortes , Feminino , Lobo Frontal/patologia , Lobo Frontal/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Lobo Parietal/patologia , Lobo Parietal/cirurgia , Probabilidade , Análise de Sobrevida , Resultado do Tratamento
7.
Cancers (Basel) ; 13(18)2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34572900

RESUMO

For patients with presumed glioblastoma, essential tumor characteristics are determined from preoperative MR images to optimize the treatment strategy. This procedure is time-consuming and subjective, if performed by crude eyeballing or manually. The standardized GSI-RADS aims to provide neurosurgeons with automatic tumor segmentations to extract tumor features rapidly and objectively. In this study, we improved automatic tumor segmentation and compared the agreement with manual raters, describe the technical details of the different components of GSI-RADS, and determined their speed. Two recent neural network architectures were considered for the segmentation task: nnU-Net and AGU-Net. Two preprocessing schemes were introduced to investigate the tradeoff between performance and processing speed. A summarized description of the tumor feature extraction and standardized reporting process is included. The trained architectures for automatic segmentation and the code for computing the standardized report are distributed as open-source and as open-access software. Validation studies were performed on a dataset of 1594 gadolinium-enhanced T1-weighted MRI volumes from 13 hospitals and 293 T1-weighted MRI volumes from the BraTS challenge. The glioblastoma tumor core segmentation reached a Dice score slightly below 90%, a patientwise F1-score close to 99%, and a 95th percentile Hausdorff distance slightly below 4.0 mm on average with either architecture and the heavy preprocessing scheme. A patient MRI volume can be segmented in less than one minute, and a standardized report can be generated in up to five minutes. The proposed GSI-RADS software showed robust performance on a large collection of MRI volumes from various hospitals and generated results within a reasonable runtime.

8.
Cancers (Basel) ; 13(12)2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34201021

RESUMO

Treatment decisions for patients with presumed glioblastoma are based on tumor characteristics available from a preoperative MR scan. Tumor characteristics, including volume, location, and resectability, are often estimated or manually delineated. This process is time consuming and subjective. Hence, comparison across cohorts, trials, or registries are subject to assessment bias. In this study, we propose a standardized Glioblastoma Surgery Imaging Reporting and Data System (GSI-RADS) based on an automated method of tumor segmentation that provides standard reports on tumor features that are potentially relevant for glioblastoma surgery. As clinical validation, we determine the agreement in extracted tumor features between the automated method and the current standard of manual segmentations from routine clinical MR scans before treatment. In an observational consecutive cohort of 1596 adult patients with a first time surgery of a glioblastoma from 13 institutions, we segmented gadolinium-enhanced tumor parts both by a human rater and by an automated algorithm. Tumor features were extracted from segmentations of both methods and compared to assess differences, concordance, and equivalence. The laterality, contralateral infiltration, and the laterality indices were in excellent agreement. The native and normalized tumor volumes had excellent agreement, consistency, and equivalence. Multifocality, but not the number of foci, had good agreement and equivalence. The location profiles of cortical and subcortical structures were in excellent agreement. The expected residual tumor volumes and resectability indices had excellent agreement, consistency, and equivalence. Tumor probability maps were in good agreement. In conclusion, automated segmentations are in excellent agreement with manual segmentations and practically equivalent regarding tumor features that are potentially relevant for neurosurgical purposes. Standard GSI-RADS reports can be generated by open access software.

9.
Neurooncol Adv ; 3(1): vdab053, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34056605

RESUMO

BACKGROUND: The impact of time-to-surgery on clinical outcome for patients with glioblastoma has not been determined. Any delay in treatment is perceived as detrimental, but guidelines do not specify acceptable timings. In this study, we relate the time to glioblastoma surgery with the extent of resection and residual tumor volume, performance change, and survival, and we explore the identification of patients for urgent surgery. METHODS: Adults with first-time surgery in 2012-2013 treated by 12 neuro-oncological teams were included in this study. We defined time-to-surgery as the number of days between the diagnostic MR scan and surgery. The relation between time-to-surgery and patient and tumor characteristics was explored in time-to-event analysis and proportional hazard models. Outcome according to time-to-surgery was analyzed by volumetric measurements, changes in performance status, and survival analysis with patient and tumor characteristics as modifiers. RESULTS: Included were 1033 patients of whom 729 had a resection and 304 a biopsy. The overall median time-to-surgery was 13 days. Surgery was within 3 days for 235 (23%) patients, and within a month for 889 (86%). The median volumetric doubling time was 22 days. Lower performance status (hazard ratio [HR] 0.942, 95% confidence interval [CI] 0.893-0.994) and larger tumor volume (HR 1.012, 95% CI 1.010-1.014) were independently associated with a shorter time-to-surgery. Extent of resection, residual tumor volume, postoperative performance change, and overall survival were not associated with time-to-surgery. CONCLUSIONS: With current decision-making for urgent surgery in selected patients with glioblastoma and surgery typically within 1 month, we found equal extent of resection, residual tumor volume, performance status, and survival after longer times-to-surgery.

10.
Phys Med Biol ; 66(12)2021 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-34049304

RESUMO

For decades, dose-volume information for segmented anatomy has provided the essential data for correlating radiotherapy dosimetry with treatment-induced complications. Dose-volume information has formed the basis for modelling those associations via normal tissue complication probability (NTCP) models and for driving treatment planning. Limitations to this approach have been identified. Many studies have emerged demonstrating that the incorporation of information describing the spatial nature of the dose distribution, and potentially its correlation with anatomy, can provide more robust associations with toxicity and seed more general NTCP models. Such approaches are culminating in the application of computationally intensive processes such as machine learning and the application of neural networks. The opportunities these approaches have for individualising treatment, predicting toxicity and expanding the solution space for radiation therapy are substantial and have clearly widespread and disruptive potential. Impediments to reaching that potential include issues associated with data collection, model generalisation and validation. This review examines the role of spatial models of complication and summarises relevant published studies. Sources of data for these studies, appropriate statistical methodology frameworks for processing spatial dose information and extracting relevant features are described. Spatial complication modelling is consolidated as a pathway to guiding future developments towards effective, complication-free radiotherapy treatment.


Assuntos
Radioterapia (Especialidade) , Planejamento da Radioterapia Assistida por Computador , Modelos Estatísticos , Probabilidade , Radiometria , Radioterapia/efeitos adversos , Dosagem Radioterapêutica
11.
Phys Imaging Radiat Oncol ; 17: 25-31, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33898774

RESUMO

BACKGROUND AND PURPOSE: External beam radiotherapy for prostate cancer deposits incidental dose to a region surrounding the target volume. Previously, an association was identified between tumor control and incidental dose for patients treated with conventional radiotherapy. We investigated whether such an association exists for patients treated using intensity modulated radiotherapy (IMRT) and tighter margins. MATERIALS AND METHODS: Computed tomography scans and three-dimensional treatment planning dose distributions were available from the Dutch randomized HYPRO trial for 397 patients in the standard fractionation arm (39 × 2 Gy) and 407 patients in the hypofractionation arm (19 × 3.4 Gy), mainly delivered using online image-guided IMRT. Endpoint was any treatment failure within 5 years. A mapping of 3D dose distributions between anatomies was performed based on distance to the surface of the prostate delineation. Mean mapped dose distributions were computed for patient groups with and without failure, obtaining dose difference distributions. Random patient permutations were performed to derive p values and to identify relevant regions. RESULTS: For high-risk patients treated in the conventional arm, higher incidental dose was significantly associated with a higher probability of tumor control in both univariate and multivariate analysis. The locations of the excess dose mainly overlapped with the position of obturator internus muscles at about 2.5 cm from the prostate surface. No such relationship could be established for intermediate-risk patients. CONCLUSIONS: An association was established between reduced treatment failure and the delivery of incidental dose outside the prostate for high-risk patients treated using conventionally fractionated IMRT.

12.
Front Neurosci ; 14: 585, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32581699

RESUMO

To summarize the distribution of glioma location within a patient population, registration of individual MR images to anatomical reference space is required. In this study, we quantified the accuracy of MR image registration to anatomical reference space with linear and non-linear transformations using estimated tumor targets of glioblastoma and lower-grade glioma, and anatomical landmarks at pre- and post-operative time-points using six commonly used registration packages (FSL, SPM5, DARTEL, ANTs, Elastix, and NiftyReg). Routine clinical pre- and post-operative, post-contrast T1-weighted images of 20 patients with glioblastoma and 20 with lower-grade glioma were collected. The 2009a Montreal Neurological Institute brain template was used as anatomical reference space. Tumors were manually segmented in the patient space and corresponding healthy tissue was delineated as a target volume in the anatomical reference space. Accuracy of the tumor alignment was quantified using the Dice score and the Hausdorff distance. To measure the accuracy of general brain alignment, anatomical landmarks were placed in patient and in anatomical reference space, and the landmark distance after registration was quantified. Lower-grade gliomas were registered more accurately than glioblastoma. Registration accuracy for pre- and post-operative MR images did not differ. SPM5 and DARTEL registered tumors most accurate, and FSL least accurate. Non-linear transformations resulted in more accurate general brain alignment than linear transformations, but tumor alignment was similar between linear and non-linear transformation. We conclude that linear transformation suffices to summarize glioma locations in anatomical reference space.

13.
Front Oncol ; 10: 469, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32346534

RESUMO

Purpose: Late gastrointestinal (GI) toxicity after radiotherapy for prostate cancer may have significant impact on the cancer survivor's quality of life. To date, little is known about local dose-effects after modern radiotherapy including hypofractionation. In the current study we related the local spatial distribution of radiation dose in the rectum to late patient-reported gastrointestinal (GI) toxicities for conventionally fractionated (CF) and hypofractionated (HF) modern radiotherapy in the randomized HYPRO trial. Material and Methods: Patients treated to 78 Gy in 2 Gy fractions (n = 298) or 64.6 Gy in 3.4 Gy fractions (n = 295) with available late toxicity questionnaires (n ≥ 2 within 1-5 years post-treatment) and available 3D planning data were eligible for this study. The majority received intensity modulated radiotherapy (IMRT). We calculated two types of dose surface maps: (1) the total delineated rectum with its central axis scaled to unity, and (2) the delineated rectum with a length of 7 cm along its central axis aligned on the prostate's half-height point (prostate-half). For each patient-reported GI symptom, dose difference maps were constructed by subtracting average co-registered EQD2 (equivalent dose in 2 Gy) dose maps of patients with and without the symptom of interest, separately for HF and CF. P-values were derived from permutation tests. We evaluated patient-reported moderate to severe GI symptoms. Results: Observed incidences of rectal bleeding and increased stool frequency were significantly higher in the HF group. For rectal bleeding (p = 0.016), mucus discharge (p = 0.015), and fecal incontinence (p = 0.001), significant local dose-effects were observed in HF patients but not in CF patients. For rectal pain, similar local dose-effects (p < 0.05) were observed in both groups. No significant local dose-effects were observed for increased stool frequency. Total rectum mapping vs. prostate-half mapping showed similar results. Conclusion: We demonstrated significant local dose-effect relationships for patient-reported late GI toxicity in patients treated with modern RT. HF patients were at higher risk for increased stool frequency and rectal bleeding, and showed the most pronounced local dose-effects in intermediate-high dose regions. These findings suggest that improvement of current treatment optimization protocols could lead to clinical benefit, in particular for HF treatment.

14.
J Neurosurg ; 134(3): 1091-1101, 2020 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-32244208

RESUMO

OBJECTIVE: Decisions in glioblastoma surgery are often guided by presumed eloquence of the tumor location. The authors introduce the "expected residual tumor volume" (eRV) and the "expected resectability index" (eRI) based on previous decisions aggregated in resection probability maps. The diagnostic accuracy of eRV and eRI to predict biopsy decisions, resectability, functional outcome, and survival was determined. METHODS: Consecutive patients with first-time glioblastoma surgery in 2012-2013 were included from 12 hospitals. The eRV was calculated from the preoperative MR images of each patient using a resection probability map, and the eRI was derived from the tumor volume. As reference, Sawaya's tumor location eloquence grades (EGs) were classified. Resectability was measured as observed extent of resection (EOR) and residual volume, and functional outcome as change in Karnofsky Performance Scale score. Receiver operating characteristic curves and multivariable logistic regression were applied. RESULTS: Of 915 patients, 674 (74%) underwent a resection with a median EOR of 97%, functional improvement in 71 (8%), functional decline in 78 (9%), and median survival of 12.8 months. The eRI and eRV identified biopsies and EORs of at least 80%, 90%, or 98% better than EG. The eRV and eRI predicted observed residual volumes under 10, 5, and 1 ml better than EG. The eRV, eRI, and EG had low diagnostic accuracy for functional outcome changes. Higher eRV and lower eRI were strongly associated with shorter survival, independent of known prognostic factors. CONCLUSIONS: The eRV and eRI predict biopsy decisions, resectability, and survival better than eloquence grading and may be useful preoperative indices to support surgical decisions.


Assuntos
Mapeamento Encefálico/métodos , Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Procedimentos Neurocirúrgicos/métodos , Adulto , Idoso , Biópsia/métodos , Neoplasias Encefálicas/patologia , Feminino , Glioblastoma/patologia , Humanos , Estimativa de Kaplan-Meier , Avaliação de Estado de Karnofsky , Masculino , Pessoa de Meia-Idade , Neoplasia Residual , Probabilidade , Curva ROC , Reprodutibilidade dos Testes , Análise de Sobrevida , Resultado do Tratamento
15.
Radiol Artif Intell ; 2(5): e190103, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33937837

RESUMO

PURPOSE: To improve the robustness of deep learning-based glioblastoma segmentation in a clinical setting with sparsified datasets. MATERIALS AND METHODS: In this retrospective study, preoperative T1-weighted, T2-weighted, T2-weighted fluid-attenuated inversion recovery, and postcontrast T1-weighted MRI from 117 patients (median age, 64 years; interquartile range [IQR], 55-73 years; 76 men) included within the Multimodal Brain Tumor Image Segmentation (BraTS) dataset plus a clinical dataset (2012-2013) with similar imaging modalities of 634 patients (median age, 59 years; IQR, 49-69 years; 382 men) with glioblastoma from six hospitals were used. Expert tumor delineations on the postcontrast images were available, but for various clinical datasets, one or more sequences were missing. The convolutional neural network, DeepMedic, was trained on combinations of complete and incomplete data with and without site-specific data. Sparsified training was introduced, which randomly simulated missing sequences during training. The effects of sparsified training and center-specific training were tested using Wilcoxon signed rank tests for paired measurements. RESULTS: A model trained exclusively on BraTS data reached a median Dice score of 0.81 for segmentation on BraTS test data but only 0.49 on the clinical data. Sparsified training improved performance (adjusted P < .05), even when excluding test data with missing sequences, to median Dice score of 0.67. Inclusion of site-specific data during sparsified training led to higher model performance Dice scores greater than 0.8, on par with a model based on all complete and incomplete data. For the model using BraTS and clinical training data, inclusion of site-specific data or sparsified training was of no consequence. CONCLUSION: Accurate and automatic segmentation of glioblastoma on clinical scans is feasible using a model based on large, heterogeneous, and partially incomplete datasets. Sparsified training may boost the performance of a smaller model based on public and site-specific data.Supplemental material is available for this article.Published under a CC BY 4.0 license.

17.
PLoS One ; 14(9): e0222939, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31560705

RESUMO

PURPOSE: During resections of brain tumors, neurosurgeons have to weigh the risk between residual tumor and damage to brain functions. Different perspectives on these risks result in practice variation. We present statistical methods to localize differences in extent of resection between institutions which should enable to reveal brain regions affected by such practice variation. METHODS: Synthetic data were generated by simulating spheres for brain, tumors, resection cavities, and an effect region in which a likelihood of surgical avoidance could be varied between institutions. Three statistical methods were investigated: a non-parametric permutation based approach, Fisher's exact test, and a full Bayesian Markov chain Monte Carlo (MCMC) model. For all three methods the false discovery rate (FDR) was determined as a function of the cut-off value for the q-value or the highest density interval, and receiver operating characteristic and precision recall curves were created. Sensitivity to variations in the parameters of the synthetic model were investigated. Finally, all these methods were applied to retrospectively collected data of 77 brain tumor resections in two academic hospitals. RESULTS: Fisher's method provided an accurate estimation of observed FDR in the synthetic data, whereas the permutation approach was too liberal and underestimated FDR. AUC values were similar for Fisher and Bayes methods, and superior to the permutation approach. Fisher's method deteriorated and became too liberal for reduced tumor size, a smaller size of the effect region, a lower overall extent of resection, fewer patients per cohort, and a smaller discrepancy in surgical avoidance probabilities between the different surgical practices. In the retrospective patient data, all three methods identified a similar effect region, with lower estimated FDR in Fisher's method than using the permutation method. CONCLUSIONS: Differences in surgical practice may be detected using voxel statistics. Fisher's test provides a fast method to localize differences but could underestimate true FDR. Bayesian MCMC is more flexible and easily extendable, and leads to similar results, but at increased computational cost.


Assuntos
Biometria/métodos , Neoplasias Encefálicas/cirurgia , Glioblastoma/cirurgia , Procedimentos Neurocirúrgicos/estatística & dados numéricos , Padrões de Prática Médica/estatística & dados numéricos , Adulto , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Encéfalo/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Simulação por Computador , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Humanos , Imageamento Tridimensional , Imageamento por Ressonância Magnética , Cadeias de Markov , Método de Monte Carlo , Curva ROC , Estudos Retrospectivos , Resultado do Tratamento
18.
JCO Clin Cancer Inform ; 3: 1-12, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30673344

RESUMO

PURPOSE: The aim of glioblastoma surgery is to maximize the extent of resection while preserving functional integrity, which depends on the location within the brain. A standard to compare these decisions is lacking. We present a volumetric voxel-wise method for direct comparison between two multidisciplinary teams of glioblastoma surgery decisions throughout the brain. METHODS: Adults undergoing first-time glioblastoma surgery from 2012 to 2013 performed by two neuro-oncologic teams were included. Patients had had a diagnostic biopsy or resection. Preoperative tumors and postoperative residues were segmented on magnetic resonance imaging in three dimensions and registered to standard brain space. Voxel-wise probability maps of tumor location, biopsy, and resection were constructed for each team to compare patient referral bias, indication variation, and treatment variation. To evaluate the quality of care, subgroups of differentially resected brain regions were analyzed for survival and functional outcome. RESULTS: One team included 101 patients, and the other included 174; 91 tumors were biopsied, and 181 were resected. Patient characteristics were largely comparable between teams. Distributions of tumor locations were dissimilar, suggesting referral bias. Distributions of biopsies were similar, suggesting absence of indication variation. Differentially resected regions were identified in the anterior limb of the right internal capsule and the right caudate nucleus, indicating treatment variation. Patients with (n = 12) and without (n = 6) surgical removal in these regions had similar overall survival and similar permanent neurologic deficits. CONCLUSION: Probability maps of tumor location, biopsy, and resection provide additional information that can inform surgical decision making across multidisciplinary teams for patients with glioblastoma.


Assuntos
Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/cirurgia , Glioblastoma/diagnóstico , Glioblastoma/cirurgia , Neuroimagem , Equipe de Assistência ao Paciente , Idoso , Biópsia , Tomada de Decisão Clínica , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Procedimentos Neurocirúrgicos/métodos , Procedimentos Neurocirúrgicos/normas
19.
Phys Med Biol ; 63(22): 22TR02, 2018 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-30418942

RESUMO

Motion and uncertainty in radiotherapy is traditionally handled via margins. The clinical target volume (CTV) is expanded to a larger planning target volume (PTV), which is irradiated to the prescribed dose. However, the PTV concept has several limitations, especially in proton therapy. Therefore, robust and probabilistic optimization methods have been developed that directly incorporate motion and uncertainty into treatment plan optimization for intensity modulated radiotherapy (IMRT) and intensity modulated proton therapy (IMPT). Thereby, the explicit definition of a PTV becomes obsolete and treatment plan optimization is directly based on the CTV. Initial work focused on random and systematic setup errors in IMRT. Later, inter-fraction prostate motion and intra-fraction lung motion became a research focus. Over the past ten years, IMPT has emerged as a new application for robust planning methods. In proton therapy, range or setup errors may lead to dose degradation and misalignment of dose contributions from different beams - a problem that cannot generally be addressed by margins. Therefore, IMPT has led to the first implementations of robust planning methods in commercial planning systems, making these methods available for clinical use. This paper first summarizes the limitations of the PTV concept. Subsequently, robust optimization methods are introduced and their applications in IMRT and IMPT planning are reviewed.


Assuntos
Terapia com Prótons/métodos , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Humanos , Movimento (Física) , Dosagem Radioterapêutica
20.
Radiother Oncol ; 129(3): 548-553, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30177372

RESUMO

BACKGROUND AND PURPOSE: To explore the use of texture analysis (TA) features of patients' 3D dose distributions to improve prediction modelling of treatment complication rates in prostate cancer radiotherapy. MATERIAL AND METHODS: Late toxicity scores, dose distributions, and non-treatment related (NTR) predictors for late toxicity, such as age and baseline symptoms, of 351 patients of the hypofractionation arm of the HYPRO randomized trial were used in this study. Apart from DVH parameters, also TA features of rectum and bladder 3D dose distributions were used for predictive modelling of gastrointestinal (GI) and genitourinary (GU) toxicities. Logistic Normal Tissue Complication Probability (NTCP) models were derived, using only NTR parameters, NTR + DVH, NTR + TA, and NTR + DVH + TA. RESULTS: For rectal bleeding, the area under the curve (AUC) for using only NTR parameters was 0.58, which increased to 0.68, and 0.73, when adding DVH or TA parameters respectively. For faecal incontinence, the AUC went up from 0.63 (NTR only), to 0.68 (+DVH) and 0.73 (+TA). For nocturia, adding TA features resulted in an AUC increase from 0.64 to 0.66, while no improvement was seen when including DVH parameters in the modelling. For urinary incontinence, the AUC improved from 0.68 to 0.71 (+DVH) and 0.73 (+TA). For GI, model improvements resulting from adding TA parameters to NTR instead of DVH were statistically significant (p < 0.04). CONCLUSION: Inclusion of 3D dosimetric texture analysis features in predictive modelling of GI and GU toxicity rates in prostate cancer radiotherapy improved prediction performance, which was statistically significant for GI.


Assuntos
Neoplasias da Próstata/radioterapia , Lesões por Radiação/etiologia , Idoso , Área Sob a Curva , Trato Gastrointestinal/efeitos da radiação , Humanos , Masculino , Pessoa de Meia-Idade , Hipofracionamento da Dose de Radiação , Radioterapia/efeitos adversos , Dosagem Radioterapêutica , Sistema Urogenital/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...