Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
JBMR Plus ; 8(8): ziae081, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39045128

RESUMO

Bone matrix formation and mineralization are two closely related, yet separated processes. Matrix formation occurs first, mineralization is a second step strictly dependent on the dietary intake of calcium and phosphorus (P). However, mineralization is commonly used as diagnostic parameter for bone-related diseases. In this context, bone loss, often characterized as a condition with reduced bone mineral density, represents a major burden for human health, for which increased dietary mineral intake is generally recommended. Using a counterintuitive approach, we use a low-P diet followed by a sufficient-P intake to increase bone volume. We show in zebrafish by histology, qPCR, micro-CT, and enzyme histochemistry that a two-months period of reduced dietary P intake stimulates extensive formation of new bone matrix, associated with the upregulation of key genes required for both bone matrix formation and mineralization. The return to a P-sufficient diet initiates the mineralization of the abundant matrix previously deposited, thus resulting in a striking increase of the mineralized bone volume as proven at the level of the vertebral column, including vertebral bodies and arches. In summary, bone matrix formation is first stimulated with a low-P diet, and its mineralization is later triggered by a sufficient-P dietary intake. In zebrafish, the uncoupling of bone formation and mineralization by alternating low and sufficient dietary P intake significantly increases the bone volume without causing skeletal malformations or ectopic mineralization. A modification of this approach to stimulate bone formation, optimized for mammalian models, can possibly open opportunities to support treatments in patients that suffer from low bone mass.

3.
Biol Rev Camb Philos Soc ; 99(3): 797-819, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38151229

RESUMO

Most tooth-bearing non-mammalian vertebrates have the capacity to replace their teeth throughout life. This capacity was lost in mammals, which replace their teeth only once at most. Not surprisingly, continuous tooth replacement has attracted much attention. Classical morphological studies (e.g. to analyse patterns of replacement) are now being complemented by molecular studies that investigate the expression of genes involved in tooth formation. This review focuses on ray-finned fish (actinopterygians), which have teeth often distributed throughout the mouth and pharynx, and more specifically on teleost fish, the largest group of extant vertebrates. First we highlight the diversity in tooth distribution and in tooth replacement patterns. Replacement tooth formation can start from a distinct (usually discontinuous and transient) dental lamina, but also in the absence of a successional lamina, e.g. from the surface epithelium of the oropharynx or from the outer dental epithelium of a predecessor tooth. The relationship of a replacement tooth to its predecessor is closely related to whether replacement is the result of a prepattern or occurs on demand. As replacement teeth do not necessarily have the same molecular signature as first-generation teeth, the question of the actual trigger for tooth replacement is discussed. Much emphasis has been laid in the past on the potential role of epithelial stem cells in initiating tooth replacement. The outcome of such studies has been equivocal, possibly related to the taxa investigated, and the permanent or transient nature of the dental lamina. Alternatively, replacement may result from local proliferation of undifferentiated progenitors, stimulated by hitherto unknown, perhaps mesenchymal, factors. So far, the role of the neurovascular link in continuous tooth replacement has been poorly investigated, despite the presence of a rich vascularisation surrounding actinopterygian (as well as chondrichthyan) teeth and despite a complete arrest of tooth replacement after nerve resection. Lastly, tooth replacement is possibly co-opted as a process to expand the number of teeth in a dentition ontogenetically whilst conserving features of the primary dentition. That neither a dental lamina, nor stem cells appear to be required for tooth replacement places teleosts in an advantageous position as models for tooth regeneration in humans, where the dental lamina regresses and epithelial stem cells are considered lost.


Assuntos
Peixes , Dente , Animais , Peixes/fisiologia , Evolução Biológica
4.
Biomolecules ; 13(12)2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38136650

RESUMO

DAF-FM DA is widely used as a live staining compound to show the presence of nitric oxide (NO) in cells. Applying this stain to live zebrafish embryos is known to indicate early centers of bone formation, but the precise (cellular) location of the signal has hitherto not been revealed. Using sections of zebrafish embryos live-stained with DAF-FM DA, we could confirm that the fluorescent signals were predominantly located in areas of ongoing bone formation. Signals were observed in the bone and tooth matrix, in the notochord sheath, as well as in the bulbus arteriosus. Surprisingly, however, they were exclusively extracellular, even after very short staining times. Von Kossa and Alizarin red S staining to reveal mineral deposits showed that DAF-FM DA stains both the mineralized and non-mineralized bone matrix (osteoid), excluding that DAF-FM DA binds non-specifically to calcified structures. The importance of NO in bone formation by osteoblasts is nevertheless undisputed, as shown by the absence of bone structures after the inhibition of NOS enzymes that catalyze the formation of NO. In conclusion, in zebrafish skeletal biology, DAF-FM DA is appropriate to reveal bone formation in vivo, independent of mineralization of the bone matrix, but it does not demonstrate intracellular NO.


Assuntos
Osteogênese , Peixe-Zebra , Animais , Peixe-Zebra/metabolismo , Óxido Nítrico/metabolismo , Osso e Ossos/metabolismo , Corantes/metabolismo , Coloração e Rotulagem
5.
J Anat ; 243(6): 960-981, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37424444

RESUMO

Vertebral bodies are composed of two types of metameric elements, centra and arches, each of which is considered as a developmental module. Most parts of the teleost vertebral column have a one-to-one relationship between centra and arches, although, in all teleosts, this one-to-one relationship is lost in the caudal fin endoskeleton. Deviation from the one-to-one relationship occurs in most vertebrates, related to changes in the number of vertebral centra or to a change in the number of arches. In zebrafish, deviations also occur predominantly in the caudal region of the vertebral column. In-depth phenotypic analysis of wild-type zebrafish was performed using whole-mount stained samples, histological analyses and synchrotron radiation X-ray tomographic microscopy 3D reconstructions. Three deviant centra phenotypes were observed: (i) fusion of two vertebral centra, (ii) wedge-shaped hemivertebrae and (iii) centra with reduced length. Neural and haemal arches and their spines displayed bilateral and unilateral variations that resemble vertebral column phenotypes of stem-ward actinopterygians or other gnathostomes as well as pathological conditions in extant species. Whether it is possible to distinguish variations from pathological alterations and whether alterations resemble ancestral conditions is discussed in the context of centra and arch variations in other vertebrate groups and basal actinopterygian species.


Assuntos
Coluna Vertebral , Peixe-Zebra , Animais , Coluna Vertebral/diagnóstico por imagem , Fenótipo
6.
Front Endocrinol (Lausanne) ; 14: 1002914, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36755921

RESUMO

Introduction: Trimeric intracellular potassium channels TRIC-A and -B are endoplasmic reticulum (ER) integral membrane proteins, involved in the regulation of calcium release mediated by ryanodine (RyRs) and inositol 1,4,5-trisphosphate (IP3Rs) receptors, respectively. While TRIC-A is mainly expressed in excitable cells, TRIC-B is ubiquitously distributed at moderate level. TRIC-B deficiency causes a dysregulation of calcium flux from the ER, which impacts on multiple collagen specific chaperones and modifying enzymatic activity, leading to a rare form of osteogenesis imperfecta (OI Type XIV). The relevance of TRIC-B on cell homeostasis and the molecular mechanism behind the disease are still unknown. Results: In this study, we exploited zebrafish to elucidate the role of TRIC-B in skeletal tissue. We demonstrated, for the first time, that tmem38a and tmem38b genes encoding Tric-a and -b, respectively are expressed at early developmental stages in zebrafish, but only the latter has a maternal expression. Two zebrafish mutants for tmem38b were generated by CRISPR/Cas9, one carrying an out of frame mutation introducing a premature stop codon (tmem38b-/- ) and one with an in frame deletion that removes the highly conserved KEV domain (tmem38bΔ120-7/Δ120-7 ). In both models collagen type I is under-modified and partially intracellularly retained in the endoplasmic reticulum, as described in individuals affected by OI type XIV. Tmem38b-/- showed a mild skeletal phenotype at the late larval and juvenile stages of development whereas tmem38bΔ120-7/Δ120-7 bone outcome was limited to a reduced vertebral length at 21 dpf. A caudal fin regeneration study pointed towards impaired activity of osteoblasts and osteoclasts associated with mineralization impairment. Discussion: Our data support the requirement of Tric-b during early development and for bone cell differentiation.


Assuntos
Canais Iônicos , Osteogênese Imperfeita , Proteínas de Peixe-Zebra , Peixe-Zebra , Animais , Osso e Ossos/metabolismo , Cálcio/metabolismo , Diferenciação Celular/genética , Canais Iônicos/genética , Osteogênese Imperfeita/genética , Peixe-Zebra/metabolismo , Proteínas de Peixe-Zebra/genética
7.
Biol Rev Camb Philos Soc ; 97(1): 414-447, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34647411

RESUMO

There are several competing hypotheses on tooth origins, with discussions eventually settling in favour of an 'outside-in' scenario, in which internal odontodes (teeth) derived from external odontodes (skin denticles) in jawless vertebrates. The evolution of oral teeth from skin denticles can be intuitively understood from their location at the mouth entrance. However, the basal condition for jawed vertebrates is arguably to possess teeth distributed throughout the oropharynx (i.e. oral and pharyngeal teeth). As skin denticle development requires the presence of ectoderm-derived epithelium and of mesenchyme, it remains to be answered how odontode-forming skin epithelium, or its competence, were 'transferred' deep into the endoderm-covered oropharynx. The 'modified outside-in' hypothesis for tooth origins proposed that this transfer was accomplished through displacement of odontogenic epithelium, that is ectoderm, not only through the mouth, but also via any opening (e.g. gill slits) that connects the ectoderm to the epithelial lining of the pharynx (endoderm). This review explores from an evolutionary and from a developmental perspective whether ectoderm plays a role in (pharyngeal) tooth and denticle formation. Historic and recent studies on tooth development show that the odontogenic epithelium (enamel organ) of oral or pharyngeal teeth can be of ectodermal, endodermal, or of mixed ecto-endodermal origin. Comprehensive data are, however, only available for a few taxa. Interestingly, in these taxa, the enamel organ always develops from the basal layer of a stratified epithelium that is at least bilayered. In zebrafish, a miniaturised teleost that only retains pharyngeal teeth, an epithelial surface layer with ectoderm-like characters is required to initiate the formation of an enamel organ from the basal, endodermal epithelium. In urodele amphibians, the bilayered epithelium is endodermal, but the surface layer acquires ectodermal characters, here termed 'epidermalised endoderm'. Furthermore, ectoderm-endoderm contacts at pouch-cleft boundaries (i.e. the prospective gill slits) are important for pharyngeal tooth initiation, even if the influx of ectoderm via these routes is limited. A balance between sonic hedgehog and retinoic acid signalling could operate to assign tooth-initiating competence to the endoderm at the level of any particular pouch. In summary, three characters are identified as being required for pharyngeal tooth formation: (i) pouch-cleft contact, (ii) a stratified epithelium, of which (iii) the apical layer adopts ectodermal features. These characters delimit the area in which teeth can form, yet cannot alone explain the distribution of teeth over the different pharyngeal arches. The review concludes with a hypothetical evolutionary scenario regarding the persisting influence of ectoderm on pharyngeal tooth formation. Studies on basal osteichthyans with less-specialised types of early embryonic development will provide a crucial test for the potential role of ectoderm in pharyngeal tooth formation and for the 'modified outside-in' hypothesis of tooth origins.


Assuntos
Brânquias , Faringe , Animais , Evolução Biológica , Camadas Germinativas , Peixe-Zebra
8.
Bone Res ; 9(1): 39, 2021 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-34465741

RESUMO

Back pain is a common condition with a high social impact and represents a global health burden. Intervertebral disc disease (IVDD) is one of the major causes of back pain; no therapeutics are currently available to reverse this disease. The impact of bone mineral density (BMD) on IVDD has been controversial, with some studies suggesting osteoporosis as causative for IVDD and others suggesting it as protective for IVDD. Functional studies to evaluate the influence of genetic components of BMD in IVDD could highlight opportunities for drug development and repurposing. By taking a holistic 3D approach, we established an aging zebrafish model for spontaneous IVDD. Increased BMD in aging, detected by automated computational analysis, is caused by bone deformities at the endplates. However, aged zebrafish spines showed changes in bone morphology, microstructure, mineral heterogeneity, and increased fragility that resembled osteoporosis. Elements of the discs recapitulated IVDD symptoms found in humans: the intervertebral ligament (equivalent to the annulus fibrosus) showed disorganized collagen fibers and herniation, while the disc center (nucleus pulposus equivalent) showed dehydration and cellular abnormalities. We manipulated BMD in young zebrafish by mutating sp7 and cathepsin K, leading to low and high BMD, respectively. Remarkably, we detected IVDD in both groups, demonstrating that low BMD does not protect against IVDD, and we found a strong correlation between high BMD and IVDD. Deep learning was applied to high-resolution synchrotron µCT image data to analyze osteocyte 3D lacunar distribution and morphology, revealing a role of sp7 in controlling the osteocyte lacunar 3D profile. Our findings suggest potential avenues through which bone quality can be targeted to identify beneficial therapeutics for IVDD.

9.
J Fish Biol ; 98(4): 971-986, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32010967

RESUMO

The teleost zebrafish (Danio rerio), an established model for human skeletal diseases, is reared under controlled conditions with defined parameters for temperature and photoperiod. Studies aimed at defining the proper rearing density have been performed with regard to behavioural and physiological stress response, sex ratio and reproduction. Studies concerning the effect of rearing density on the skeletal phenotype are lacking. This study analyses the response of the skeleton to different rearing densities and describes the skeletal deformities. Wild-type zebrafish were reared up to 30 dpf (days post-fertilization) in a common environment. From 30 to 90 dpf, animals were reared at three different densities: high density (HD), 32 fish l-1 ; medium density (MD), 8 fish l-1 and low density (LD), 2 fish l-1 . Animals at 30 and 90 dpf were collected and whole-mount stained with Alizarin red S to visualize mineralized tissues. The entire skeleton was analysed for meristic counts and 172 types of deformities. The results showed that the rearing density significantly influenced the specimens' average standard length, which decreased with the increase in the rearing density. Differences in meristic counts among the three groups were not observed. Rearing density-independent malformations affected the ribs, neural arches and the spines of the abdominal region, as well as vertebrae of the caudal complex. The HD group showed the highest number of deformities per specimen, the highest number of observed types of deformities and, together with the MD group, the highest frequency of specimens affected by severe deformities. In particular, the HD group showed deformities affecting arches, spines and vertebral centra in the caudal region of the vertebral column. This study provides evidence of an effect of the rearing density on the development of different skeletal phenotypes.


Assuntos
Osso e Ossos/anormalidades , Peixe-Zebra/anatomia & histologia , Animais , Osso e Ossos/anatomia & histologia , Densidade Demográfica , Razão de Masculinidade , Estresse Fisiológico , Peixe-Zebra/fisiologia
10.
J Fish Biol ; 98(4): 987-994, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31858594

RESUMO

The anabolic effect of exercise on muscles and bones is well documented. In teleost fish, exercise has been shown to accelerate skeletogenesis, to increase bone volume, and to change the shape of vertebral bodies. Still, increased swimming has also been reported to induce malformations of the teleost vertebral column, particularly lordosis. This study examines whether zebrafish (Danio rerio) develops lordosis as a result of continuous physical exercise. Zebrafish were subjected, for 1 week, to an increased swimming exercise of 5.0, 6.5 or 8.0 total body lengths (TL) per second. Control and exercise group zebrafish were examined for the presence of vertebral abnormalities, by in vivo examination, whole mount staining for bone and cartilage and histology and micro-computed tomography (CT) scanning. Exercise zebrafish developed a significantly higher rate of lordosis in the haemal part of the vertebral column. At the end of the experiment, the frequency of lordosis in the control groups was 0.5 ± 1.3% and that in the exercise groups was 7.5 ± 10.6%, 47.5 ± 10.6% and 92.5 ± 6.0% of 5.0, 6.5 and 8.0 TL∙s-1 , respectively. Histological analysis and CT scanning revealed abnormal vertebrae with dorsal folding of the vertebral body end plates. Possible mechanisms that trigger lordotic spine malformations are discussed. This is the first study to report a quick, reliable and welfare-compatible method of inducing skeletal abnormalities in a vertebrate model during the post-embryonic period.


Assuntos
Cartilagem/patologia , Lordose/patologia , Condicionamento Físico Animal/efeitos adversos , Coluna Vertebral/patologia , Natação , Peixe-Zebra/fisiologia , Animais , Lordose/diagnóstico por imagem , Microtomografia por Raio-X
11.
J Fish Biol ; 98(4): 1007-1017, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32242924

RESUMO

One of the most frequently applied techniques in zebrafish (Danio rerio) research is the visualisation or manipulation of specific cell populations using transgenic reporter lines. The generation of these transgenic zebrafish, displaying cell- or tissue-specific expression of frequently used fluorophores such as Green Fluorescent Protein (GFP) or mCherry, is relatively easy using modern techniques. Fluorophores with different emission wavelengths and driven by different promoters can be monitored simultaneously in the same animal. Photoconvertible fluorescent proteins (pcFPs) are different from these standard fluorophores because their emission spectrum is changed when exposed to UV light, a process called photoconversion. Here, the benefits and versatility of using pcFPs for both single and dual fluorochrome imaging in zebrafish skeletal research in a previously generated osx:Kaede transgenic line are illustrated. In this line, Kaede, which is expressed under control of the osterix, otherwise known as sp7, promoter thereby labelling immature osteoblasts, can switch from green to red fluorescence upon irradiation with UV light. First, this study demonstrates that osx:Kaede exhibits an expression pattern similar to a previously described osx:nuGFP transgenic line in both larval and adult stages, hereby validating the use of this line for the imaging of immature osteoblasts. More in-depth experiments highlight different applications for osx:Kaede, such as lineage tracing and its combined use with in vivo skeletal staining and other transgenic backgrounds. Mineral staining in combination with osx:Kaede confirms osteoblast-independent mineralisation of the notochord. Osteoblast lineage tracing reveals migration and dedifferentiation of scleroblasts during fin regeneration. Finally, this study shows that combining two transgenics, osx:Kaede and osc:GFP, with similar emission wavelengths is possible when using a pcFP such as Kaede.


Assuntos
Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Imagem Óptica , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Corantes Fluorescentes/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
12.
13.
Int J Mol Sci ; 21(15)2020 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-32751494

RESUMO

Dietary phosphorus (P) is essential for bone mineralisation in vertebrates. P deficiency can cause growth retardation, osteomalacia and bone deformities, both in teleosts and in mammals. Conversely, excess P supply can trigger soft tissue calcification and bone hypermineralisation. This study uses a wide range of complementary techniques (X-rays, histology, TEM, synchrotron X-ray tomographic microscopy, nanoindentation) to describe in detail the effects of dietary P on the zebrafish skeleton, after two months of administering three different diets: 0.5% (low P, LP), 1.0% (regular P, RP), and 1.5% (high P, HP) total P content. LP zebrafish display growth retardation and hypomineralised bones, albeit without deformities. LP zebrafish increase production of non-mineralised bone matrix, and osteoblasts have enlarged endoplasmic reticulum cisternae, indicative for increased collagen synthesis. The HP diet promotes growth, high mineralisation, and stiffness but causes vertebral centra fusions. Structure and arrangement of bone matrix collagen fibres are not influenced by dietary P in all three groups. In conclusion, low dietary P content stimulates the formation of non-mineralised bone without inducing malformations. This indicates that bone formation and mineralisation are uncoupled. In contrast, high dietary P content promotes mineralisation and vertebral body fusions. This new zebrafish model is a useful tool to understand the mechanisms underlying osteomalacia and abnormal mineralisation, due to underlying variations in dietary P levels.


Assuntos
Osso e Ossos/química , Calcificação Fisiológica/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Fósforo na Dieta , Animais , Fósforo na Dieta/análise , Fósforo na Dieta/farmacologia , Peixe-Zebra
14.
Proc Natl Acad Sci U S A ; 117(21): 11503-11512, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32398375

RESUMO

To explain the evolutionary origin of vertebrate teeth from odontodes, it has been proposed that competent epithelium spread into the oropharyngeal cavity via the mouth and other possible channels such as the gill slits [Huysseune et al., 2009, J. Anat. 214, 465-476]. Whether tooth formation deep inside the pharynx in extant vertebrates continues to require external epithelia has not been addressed so far. Using zebrafish we have previously demonstrated that cells derived from the periderm penetrate the oropharyngeal cavity via the mouth and via the endodermal pouches and connect to periderm-like cells that subsequently cover the entire endoderm-derived pharyngeal epithelium [Rosa et al., 2019, Sci. Rep. 9, 10082]. We now provide conclusive evidence that the epithelial component of pharyngeal teeth in zebrafish (the enamel organ) is derived from medial endoderm, as hitherto assumed based on position deep in the pharynx. Yet, dental morphogenesis starts only after the corresponding endodermal pouch (pouch 6) has made contact with the skin ectoderm, and only after periderm-like cells have covered the prospective tooth-forming endodermal epithelium. Manipulation of signaling pathways shown to adversely affect tooth development indicates they act downstream of these events. We demonstrate that pouch-ectoderm contact and the presence of a periderm-like layer are both required, but not sufficient, for tooth initiation in the pharynx. We conclude that the earliest interactions to generate pharyngeal teeth encompass those between different epithelial populations (skin ectoderm, endoderm, and periderm-like cells in zebrafish), in addition to the epithelial-mesenchymal interactions that govern the formation of all vertebrate teeth.


Assuntos
Epitélio/fisiologia , Camadas Germinativas , Odontogênese/fisiologia , Faringe/fisiologia , Dente/crescimento & desenvolvimento , Animais , Evolução Biológica , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Camadas Germinativas/citologia , Camadas Germinativas/fisiologia , Transdução de Sinais/fisiologia , Peixe-Zebra
15.
J Anat ; 236(3): 463-473, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31670843

RESUMO

Modern altricial birds are the fastest growing vertebrates, whereas various degrees of precocity (functional maturity) result in slower growth. Diaphyseal osteohistology, the best proxy for inferring relative growth rates in fossils, suggests that in the earliest birds, posthatching growth rates were more variable than in modern representatives, with some showing considerably slow growth that was attributed to their assumed precocial flight abilities. For finding clues how precocial or altricial skeletogenesis and related growth acceleration could be traced in avian evolution, as a case study we investigated the growing limb diaphyseal histology in an ontogenetic series of ducks which, among several other avian taxa, show a combination of altricial wing and precocial leg development. Here we report the unexpected discovery that chondroid bone, a skeletal tissue family intermediate between cartilage and bone, extensively contributes to the development of limb bone shaft in ducks up to at least 30 days posthatching age. To our knowledge, chondroid bone has never been reported in such quantities and with an ontogenetically extended deposition period in post-embryonic, non-pathological periosteal bone formation of any tetrapod limb. It shows transitional cellular/lacunar morphologies and matrix staining properties between cartilage and woven bone and takes a significant part in the diametric growth of the limb bone shaft. Its amount and distribution through duckling ontogeny seems to be associated with the disparate functional and growth trajectories of the altricial wings vs. precocial legs characteristic of duck limb development. The presence of isogenous cell groups in the periosteal chondroid bone implies that cartilage-like interstitial growth took place before matrix mineralization complementing appositional bone growth. Based on these characteristics and on its fast formation rate in all previously reported normal as well as pathological cases, we suggest that chondroid bone in ducks significantly accelerates diametric limb bone growth. Related to this growth acceleration, we hypothesize that chondroid bone may be generally present in the growing limb bones of modern birds and hence may have key skeletogenic importance in achieving extreme avian growth rates and placing birds among the fastest growing vertebrates. Thus, we encourage future studies to test this hypothesis by investigating the occurrence of chondroid bone in a variety of precocial and altricial bird species, and to explore the presence of similar tissues in the growing limbs of other extant and extinct tetrapods in order to understand the evolutionary significance of chondroid bone in accelerated appendicular skeletogenesis.


Assuntos
Desenvolvimento Ósseo/fisiologia , Osso e Ossos/fisiologia , Cartilagem/crescimento & desenvolvimento , Patos/crescimento & desenvolvimento , Animais , Patos/fisiologia , Asas de Animais/crescimento & desenvolvimento
16.
J Exp Biol ; 222(Pt 3)2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30573664

RESUMO

Calcium and phosphorus (P) are the main bone minerals, and P deficiency can cause hypomineralized bones (osteomalacia) and malformations. This study used a P-deficient salmon model to falsify three hypotheses. First, an extended period of dietary P deficiency does not cause pathologies other than osteomalacia. Second, secondary mineralization of non-mineralized bone is possible. Third, secondary mineralization can restore the bones' mineral composition and mechanical properties. For 7 weeks, post-smolt Atlantic salmon (Salmo salar) received diets with regular P content (RP) or with a 50% lowered P content (LP). For additional 9 weeks, RP animals continued on the regular diet (RP-RP). LP animals continued on the LP diet (LP-LP), on a regular P diet (LP-RP) or on a high P diet (LP-HP). After 16 weeks, animals in all groups maintained a non-deformed vertebral column. LP-LP animals continued bone formation albeit without mineralization. Nine weeks of RP diet largely restored the mineral content and mechanical properties of vertebral bodies. Mineralization resumed deep inside the bone and away from osteoblasts. The history of P deficiency was traceable in LP-RP and LP-HP animals as a ring of low-mineralized bone in the vertebral body endplates, but no tissue alterations occurred that foreshadow vertebral body compression or fusion. Large quantities of non-mineralized salmon bone have the capacity to re-mineralize. If 16 weeks of P deficiency as a single factor is not causal for typical vertebral body malformations, other factors remain to be identified. This example of functional bone without minerals may explain why some teleost species can afford to have an extremely low mineralized skeleton.


Assuntos
Osso e Ossos/fisiologia , Calcificação Fisiológica/efeitos dos fármacos , Fósforo/deficiência , Salmo salar/fisiologia , Ração Animal/análise , Animais , Dieta/veterinária
17.
J Morphol ; 279(9): 1301-1311, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30187932

RESUMO

Variation of vertebral centra numbers is common in vertebrates. Likewise, the number of associated elements such as ribs and neural and haemal arches can vary and affect all regions of the vertebral column. In mammals, only the number of cervical vertebrae is invariable. Variation of total vertebral centra numbers is well documented in teleost fish, often related to temperature. Less information is available about which part of the vertebral column and which associated elements are liable to variation. Here, variation in number of vertebral centra and associated elements is studied in Chinook salmon in six distinct anatomical regions. Animals are raised at 8 and 12°C to ask whether the vertebral centrum numbers, the pattern, and the frequency of variation in particular regions are temperature dependent. No significant difference concerning the total number of vertebrae was found, but regional differences occurred between the 8 and 12°C groups. Twelve specimens out of 60 of the 12°C group had three postcranial vertebrae compared to only one specimen in the 8°C group. The number of transitional vertebrae is significantly different in 8 and 12°C specimens. Fewer transitional vertebrae occur in more anterior positions in 8°C specimens. Most specimens of both temperature groups had two ural centra; however 17 specimens out of 60 of the 12°C group had up to five ural centra. Specimens of the 12°C group show more variation in the presence of the vestigial ribs associated with transitional vertebrae. Clearly, the postcranial, transitional, and ural regions are temperature sensitive. This study shows that nonsignificant differences in the total number of vertebrae can mask significant regional variation. Variation of vertebral numbers could be the consequence of loss or gain of vertebral centra and/or a change in the identity of the associated element on the vertebral centrum.


Assuntos
Salmão/fisiologia , Coluna Vertebral/fisiologia , Temperatura , Animais , Coluna Vertebral/anatomia & histologia
18.
Sci Rep ; 8(1): 3646, 2018 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-29483529

RESUMO

Exercise promotes gain in bone mass through adaptive responses of the vertebrate skeleton. This mechanism counteracts age- and disease-related skeletal degradation, but remains to be fully understood. In life sciences, zebrafish emerged as a vertebrate model that can provide new insights into the complex mechanisms governing bone quality. To test the hypothesis that musculoskeletal exercise induces bone adaptation in adult zebrafish and to characterize bone reorganization, animals were subjected to increased physical exercise for four weeks in a swim tunnel experiment. Cellular, structural and compositional changes of loaded vertebrae were quantified using integrated high-resolution analyses. Exercise triggered rapid bone adaptation with substantial increases in bone-forming osteoblasts, bone volume and mineralization. Clearly, modeling processes in zebrafish bone resemble processes in human bone. This study highlights how exercise experiments in adult zebrafish foster in-depth insight into aging-related bone diseases and can thus catalyze the search for appropriate prevention and new treatment options.


Assuntos
Osso e Ossos/fisiologia , Peixe-Zebra/fisiologia , Animais , Densidade Óssea/fisiologia , Osteogênese/fisiologia , Condicionamento Físico Animal , Natação
19.
Proc Biol Sci ; 283(1841)2016 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-27798301

RESUMO

European eels (Anguilla anguilla) undertake an impressive 5 000 km long migration from European fresh waters through the North Atlantic Ocean to the Sargasso Sea. Along with sexual maturation, the eel skeleton undergoes a remarkable morphological transformation during migration, where a hitherto completely obscure bone loss phenomenon occurs. To unravel mechanisms of the maturation-related decay of the skeleton, we performed a multiscale assessment of eels' bones at different life-cycle stages. Accordingly, the skeleton reflects extensive bone loss that is mediated via multinucleated bone-resorbing osteoclasts, while other resorption mechanisms such as osteocytic osteolysis or matrix demineralization were not observed. Preserving mechanical stability and releasing minerals for energy metabolism are two mutually exclusive functions of the skeleton that are orchestrated in eels through the presence of two spatially segregated hard tissues: cellular bone and acellular notochord. The cellular bone serves as a source of mineral release following osteoclastic resorption, whereas the mineralized notochord sheath, which is inaccessible for resorption processes due to an unmineralized cover layer, ensures sufficient mechanical stability as a part of the notochord sheath. Clearly, an eel's skeleton is structurally optimized to meet the metabolic challenge of fasting and simultaneous sexual development during an exhausting journey to spawning areas, while the function of the vertebral column is maintained to achieve this goal.


Assuntos
Anguilla/anatomia & histologia , Migração Animal , Reabsorção Óssea , Osso e Ossos/fisiologia , Estágios do Ciclo de Vida , Anguilla/fisiologia , Animais , Oceano Atlântico , Calcificação Fisiológica
20.
PLoS One ; 11(4): e0152870, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27049953

RESUMO

The Atlantic salmon (Salmo salar) and African bichir (Polypterus senegalus) are both actinopterygian fish species that continuously replace their teeth without the involvement of a successional dental lamina. Instead, they share the presence of a middle dental epithelium: an epithelial tier enclosed by inner and outer dental epithelium. It has been hypothesized that this tier could functionally substitute for a successional dental lamina and might be a potential niche to house epithelial stem cells involved in tooth cycling. Therefore, in this study we performed a BrdU pulse chase experiment on both species to (1) determine the localization and extent of proliferating cells in the dental epithelial layers, (2) describe cell dynamics and (3) investigate if label-retaining cells are present, suggestive for the putative presence of stem cells. Cells proliferate in the middle dental epithelium, outer dental epithelium and cervical loop at the lingual side of the dental organ to form a new tooth germ. Using long chase times, both in S. salar (eight weeks) and P. senegalus (eight weeks and twelve weeks), we could not reveal the presence of label-retaining cells in the dental organ. Immunostaining of P. senegalus dental organs for the transcription factor Sox2, often used as a stem cell marker, labelled cells in the zone of outer dental epithelium which grades into the oral epithelium (ODE transition zone) and the inner dental epithelium of a successor only. The location of Sox2 distribution does not provide evidence for epithelial stem cells in the dental organ and, more specifically, in the middle dental epithelium. Comparison of S. salar and P. senegalus reveals shared traits in tooth cycling and thus advances our understanding of the developmental mechanism that ensures lifelong replacement.


Assuntos
Peixes/fisiologia , Salmo salar/fisiologia , Dente/fisiologia , Animais , Proliferação de Células , Células Epiteliais/citologia , Dente/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA