Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 8194, 2024 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-38589554

RESUMO

Accurate modeling of cerebral hemodynamics is crucial for better understanding the hemodynamics of stroke, for which computational fluid dynamics (CFD) modeling is a viable tool to obtain information. However, a comprehensive study on the accuracy of cerebrovascular CFD models including both transient arterial pressures and flows does not exist. This study systematically assessed the accuracy of different outlet boundary conditions (BCs) comparing CFD modeling and an in-vitro experiment. The experimental setup consisted of an anatomical cerebrovascular phantom and high-resolution flow and pressure data acquisition. The CFD model of the same cerebrovascular geometry comprised five sets of stationary and transient BCs including established techniques and a novel BC, the phase modulation approach. The experiment produced physiological hemodynamics consistent with reported clinical results for total cerebral blood flow, inlet pressure, flow distribution, and flow pulsatility indices (PI). The in-silico model instead yielded time-dependent deviations between 19-66% for flows and 6-26% for pressures. For cerebrovascular CFD modeling, it is recommended to avoid stationary outlet pressure BCs, which caused the highest deviations. The Windkessel and the phase modulation BCs provided realistic flow PI values and cerebrovascular pressures, respectively. However, this study shows that the accuracy of current cerebrovascular CFD models is limited.


Assuntos
Hemodinâmica , Hidrodinâmica , Velocidade do Fluxo Sanguíneo , Pressão Arterial , Simulação por Computador , Circulação Cerebrovascular , Modelos Cardiovasculares
2.
Artigo em Inglês | MEDLINE | ID: mdl-32117923

RESUMO

Enhancement of activity is one major topic related to the aging society. Therefore, it is necessary to understand people's motion and identify possible risk factors during activity. Technology can be used to monitor motion patterns during daily life. Especially the use of artificial intelligence combined with wearable sensors can simplify measurement systems and might at some point replace the standard motion capturing using optical measurement technologies. Therefore, this study aims to analyze the estimation of 3D joint angles and joint moments of the lower limbs based on IMU data using a feedforward neural network. The dataset summarizes optical motion capture data of former studies and additional newly collected IMU data. Based on the optical data, the acceleration and angular rate of inertial sensors was simulated. The data was augmented by simulating different sensor positions and orientations. In this study, gait analysis was undertaken with 30 participants using a conventional motion capture set-up based on an optoelectronic system and force plates in parallel with a custom IMU system consisting of five sensors. A mean correlation coefficient of 0.85 for the joint angles and 0.95 for the joint moments was achieved. The RMSE for the joint angle prediction was smaller than 4.8° and the nRMSE for the joint moment prediction was below 13.0%. Especially in the sagittal motion plane good results could be achieved. As the measured dataset is rather small, data was synthesized to complement the measured data. The enlargement of the dataset improved the prediction of the joint angles. While size did not affect the joint moment prediction, the addition of noise to the dataset resulted in an improved prediction accuracy. This indicates that research on appropriate augmentation techniques for biomechanical data is useful to further improve machine learning applications.

3.
Med Biol Eng Comput ; 58(1): 211-225, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31823114

RESUMO

In recent years, gait analysis outside the laboratory attracts more and more attention in clinical applications as well as in life sciences. Wearable sensors such as inertial sensors show high potential in these applications. Unfortunately, they can only measure kinematic motions patterns indirectly and the outcome is currently jeopardized by measurement discrepancies compared with the gold standard of optical motion tracking. The aim of this study was to overcome the limitation of measurement discrepancies and the missing information on kinetic motion parameters using a machine learning application based on artificial neural networks. For this purpose, inertial sensor data-linear acceleration and angular rate-was simulated from a database of optical motion tracking data and used as input for a feedforward and long short-term memory neural network to predict the joint angles and moments of the lower limbs during gait. Both networks achieved mean correlation coefficients higher than 0.80 in the minor motion planes, and correlation coefficients higher than 0.98 in the sagittal plane. These results encourage further applications of artificial intelligence to support gait analysis. Graphical Abstract The graphical abstract displays the processing of the data: IMU data is used as input to a feedforward and a long short-term memory neural network to predict the joint kinematics and kinetics of the lower limbs during gait.


Assuntos
Marcha/fisiologia , Articulações/fisiologia , Extremidade Inferior/fisiologia , Redes Neurais de Computação , Fenômenos Biomecânicos , Bases de Dados como Assunto , Humanos , Cinética , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA