Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MethodsX ; 10: 101964, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36578290

RESUMO

We demonstrate a straightforward approach to integrating a magnetic field into a low-temperature scanning tunneling microscope (STM) by adhering an NdFeB permanent magnet to a magnetizable sample plate. To render our magnet concept compatible with high-temperature sample cleaning procedures, we make the irreversible demagnetization of the magnet a central part of our preparation cycle. After sacrificing the magnet by heating it above its Curie temperature, we use a transfer tool to attach a new magnet in-situ prior to transferring the sample into the STM. We characterize the magnetic field created by the magnet using the Abrikosov vortex lattice of superconducting NbSe2. Excellent agreement between the distance dependent magnetic fields from experiments and simulations allows us to predict the magnitude and orientation of magnetic flux at any location with respect to the magnet and the sample plate. Our concept is an accessible solution for field-dependent surface science studies that require fields in the range of up to 400 mT and otherwise detrimental heating procedures.•Accessible magnetic field generation.•Selectable field strength and orientation.•Compatible with high-temperature sample preparation.

2.
Nat Commun ; 13(1): 4745, 2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-35961970

RESUMO

The van-der-Waals material CrSBr stands out as a promising two-dimensional magnet. Here, we report on its detailed magnetic and structural characteristics. We evidence that it undergoes a transition to an A-type antiferromagnetic state below TN ≈ 140 K with a pronounced two-dimensional character, preceded by ferromagnetic correlations within the monolayers. Furthermore, we unravel the low-temperature hidden-order within the long-range magnetically-ordered state. We find that it is associated to a slowing down of the magnetic fluctuations, accompanied by a continuous reorientation of the internal field. These take place upon cooling below Ts ≈ 100 K, until a spin freezing process occurs at T* ≈ 40 K. We argue this complex behavior to reflect a crossover driven by the in-plane uniaxial anisotropy, which is ultimately caused by its mixed-anion character. Our findings reinforce CrSBr as an important candidate for devices in the emergent field of two-dimensional magnetic materials.

3.
MethodsX ; 9: 101784, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35898613

RESUMO

Quasiparticle interference imaging (QPI) offers insight into the band structure of quantum materials from the Fourier transform of local density of states (LDOS) maps. Their acquisition with a scanning tunneling microscope is traditionally tedious due to the large number of required measurements that may take several days to complete. The recent demonstration of sparse sampling for QPI imaging showed how the effective measurement time could be fundamentally reduced by only sampling a small and random subset of the total LDOS. However, the amount of required sub-sampling to faithfully recover the QPI image remained a recurring question. Here we introduce an adaptive sparse sampling (ASS) approach in which we gradually accumulate sparsely sampled LDOS measurements until a desired quality level is achieved via compressive sensing recovery. The iteratively measured random subset of the LDOS can be interleaved with regular topographic images that are used for image registry and drift correction. These reference topographies also allow to resume interrupted measurements to further improve the QPI quality. Our ASS approach is a convenient extension to quasiparticle interference imaging that should remove further hesitation in the implementation of sparse sampling mapping schemes. • Accumulative sampling for unknown degree of sparsity • Controllably interrupt and resume QPI measurements • Scattering wave conserving background subtractions.

4.
Dalton Trans ; 50(9): 3216-3223, 2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33576758

RESUMO

We report on the phase formation and the superconducting properties in the NbS2 system. Specifically, we have performed a series of standardized solid-state syntheses in this system, which allow us to establish a comprehensive synthesis map for the formation of the two polytypes 2H-NbS2 and 3R-NbS2, respectively. We show that the identification of two polytypes by means of X-ray diffraction is not always unambiguous. Our physical property measurements on a phase-pure sample of 3R-NbS2, on a phase-pure sample of 2H-NbS2, and a mixed phase sample confirm earlier reports that 2H-NbS2 is a bulk superconductor and that 3R-NbS2 is not a superconductor above T = 1.75 K. Our results clearly show that specific heat measurements, as true bulk measurements, are crucial for the identification of superconducting materials in this and related systems. Our results indicate that for the investigation of van der Waals materials great care has to be taken on choosing the synthesis conditions for obtaining phase pure samples.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...