Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Analyst ; 124(8): 1181-4, 1999 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-10736848

RESUMO

Novel enzyme membranes are introduced. Modified polymeric gas-permeable layers were developed enabling biological components which have available reactive groups (-NH2, -OH, -SH, -COOH) to couple covalently on to their surfaces. Therefore, gas-permeable two component room temperature vulcanizing (2K-RTV) silicone rubber was modified using additional cross-linking agents. Triethoxysilanes with functional groups on their side chains such as epoxy or amino groups were used. A special attribute of the resulting gas-permeable membranes is that their formation and modification occur simultaneously during one reaction step. IR spectroscopy was used to observe the changes in the polymeric structure due to the reaction with the additional cross-linking agents. Sensors equipped with these layers are suitable to measure dissolved gases such as O2, CO2 and NH3 consumed or produced by enzymes converting their substrates. Determination of glucose, a well investigated enzymatic detection process, was chosen to demonstrate the applicability of the enzyme immobilisation. Glucose oxidase was immobilised on the membranes and glucose was detected by amperometric measurement of oxygen consumption. It is expected that this immobilisation method will also be useful for miniaturised planar biosensors.


Assuntos
Técnicas Biossensoriais , Eletroquímica , Glucose/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA