Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Blood Adv ; 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38810258

RESUMO

Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process involving the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine AMPK KO T cells decreased oxidative metabolism at early timepoints post-transplant and lacked a compensatory increase in glycolysis following inhibition of the electron transport chain. Immunoprecipitation using an antibody specific to phosphorylated targets of AMPK determined that AMPK modified interactions of several glycolytic enzymes including aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH), and enzyme assays indicated impaired aldolase and GAPDH activity in AMPK KO T cells. Importantly, these changes in glycolysis correlated with both an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation and a decrease in the total number of donor CD4 T cells recovered at later time points post-transplant. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo. GVHD results also mirrored those of the murine model, with reduced CD4/CD8 ratios and a significant improvement in disease severity. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells and endorse further study of AMPK inhibition as a potential clinical target for future GVHD therapies.

2.
J Biol Chem ; 300(1): 105488, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38000657

RESUMO

Cellular therapies are currently employed to treat a variety of disease processes. For T cell-based therapies, success often relies on the metabolic fitness of the T cell product, where cells with enhanced metabolic capacity demonstrate improved in vivo efficacy. AMP-activated protein kinase (AMPK) is a cellular energy sensor which combines environmental signals with cellular energy status to enforce efficient and flexible metabolic programming. We hypothesized that increasing AMPK activity in human T cells would augment their oxidative capacity, creating an ideal product for adoptive cellular therapies. Lentiviral transduction of the regulatory AMPKγ2 subunit stably enhanced intrinsic AMPK signaling and promoted mitochondrial respiration with increased basal oxygen consumption rates, higher maximal oxygen consumption rate, and augmented spare respiratory capacity. These changes were accompanied by increased proliferation and inflammatory cytokine production, particularly within restricted glucose environments. Introduction of AMPKγ2 into bulk CD4 T cells decreased RNA expression of canonical Th2 genes, including the cytokines interleukin (IL)-4 and IL-5, while introduction of AMPKγ2 into individual Th subsets universally favored proinflammatory cytokine production and a downregulation of IL-4 production in Th2 cells. When AMPKγ2 was overexpressed in regulatory T cells, both in vitro proliferation and suppressive capacity increased. Together, these data suggest that augmenting intrinsic AMPK signaling via overexpression of AMPKγ2 can improve the expansion and functional potential of human T cells for use in a variety of adoptive cellular therapies.


Assuntos
Proteínas Quinases Ativadas por AMP , Expressão Gênica , Transdução de Sinais , Linfócitos T , Humanos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Citocinas/metabolismo , Mitocôndrias/metabolismo , Células Th2/metabolismo , Expressão Gênica/genética , Linfócitos T/citologia , Linfócitos T/enzimologia , Linfócitos T/imunologia , Células T de Memória/enzimologia , Glucose/metabolismo , Linfócitos T CD4-Positivos/enzimologia , Células Cultivadas
3.
bioRxiv ; 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37398326

RESUMO

Allogeneic T cells reprogram their metabolism during acute graft-versus-host disease (GVHD) in a process reliant on the cellular energy sensor AMP-activated protein kinase (AMPK). Deletion of AMPK in donor T cells limits GVHD but still preserves homeostatic reconstitution and graft-versus-leukemia (GVL) effects. In the current studies, murine T cells lacking AMPK decreased oxidative metabolism at early timepoints post-transplant and were also unable to mediate a compensatory increase in glycolysis following inhibition of the electron transport chain. Human T cells lacking AMPK gave similar results, with glycolytic compensation impaired both in vitro and following expansion in vivo in a modified model of GVHD. Immunoprecipitation of proteins from day 7 allogeneic T cells, using an antibody specific to phosphorylated AMPK targets, recovered lower levels of multiple glycolysis-related proteins including the glycolytic enzymes aldolase, enolase, pyruvate kinase M (PKM), and glyceraldehyde 3-phosphate dehydrogenase (GAPDH). Functionally, murine T cells lacking AMPK exhibited impaired aldolase activity following anti-CD3/CD28 stimulation and a decrease in GAPDH activity on day 7 post-transplant. Importantly, these changes in glycolysis correlated with an impaired ability of AMPK KO T cells to produce significant amounts of interferon gamma (IFNγ) upon antigenic re-stimulation. Together these data highlight a significant role for AMPK in controlling oxidative and glycolytic metabolism in both murine and human T cells during GVHD and endorse further study of AMPK inhibition as a potential target for future clinical therapies. KEY POINTS: AMPK plays a key role in driving both and oxidative and glycolytic metabolism in T cells during graft-versus-host disease (GVHD)Absence of AMPK simultaneously impairs both glycolytic enzyme activity, most notably by aldolase, and interferon gamma (IFNγ) production.

4.
Dalton Trans ; 52(29): 9964-9982, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431840

RESUMO

A series of four indolo[2,3-e]benzazocines HL1-HL4 and two indolo[2,3-f]benzazonines HL5 and HL6, as well as their respective copper(II) complexes 1-6, were synthesized and characterized by 1H and 13C NMR spectroscopy, ESI mass spectrometry, single crystal X-ray diffraction (SC-XRD) and combustion analysis (C, H, N). SC-XRD studies of precursors Vd, VIa·0.5MeOH, of ligands HL4 and HL6·DCM, and complexes 2·2DMF, 5·2DMF, 5'·iPrOH·MeOH provided insights into the energetically favored conformations of eight- and nine-membered heterocycles in the four-ring systems. In addition, proton dissociation constants (pKa) of HL1, HL2 and HL5, complexes 1, 2 and 5, overall stability constants (log ß) of 1, 2 and 5 in 30% (v/v) DMSO/H2O at 298 K, as well as thermodynamic solubility of HL1-HL6 and 1-6 in aqueous solution at pH 7.4 were determined by UV-vis spectroscopy. All compounds were tested for antiproliferative activity against Colo320, Colo205 and MCF-7 cell lines and showed IC50 values in the low micromolar to sub-micromolar concentration range, while some of them (HL1, HL5 and HL6, 1, 2 and 6) showed remarkable selectivity towards malignant cell lines. Ethidium bromide displacement studies provided evidence that DNA is not the primary target for these drugs. Rather, inhibition of tubulin assembly is likely the underlying mechanism responsible for their antiproliferative activity. Tubulin disassembly experiments showed that HL1 and 1 are effective microtubule destabilizing agents binding to the colchicine site. This was also confirmed by molecular modelling investigations. To the best of our knowledge, complex 1 is the first reported transition metal complex to effectively bind to the tubulin-colchicine pocket.


Assuntos
Antineoplásicos , Complexos de Coordenação , Compostos Heterocíclicos , Cobre/química , Tubulina (Proteína) , Modelos Moleculares , Complexos de Coordenação/química , Espectroscopia de Ressonância Magnética , Microtúbulos , Antineoplásicos/química , Cristalografia por Raios X , Ligantes
5.
J Med Chem ; 65(3): 2238-2261, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35104137

RESUMO

A series of latonduine and indoloquinoline derivatives HL1-HL8 and their copper(II) complexes (1-8) were synthesized and comprehensively characterized. The structures of five compounds (HL6, [CuCl(L1)(DMF)]·DMF, [CuCl(L2)(CH3OH)], [CuCl(L3)]·0.5H2O, and [CuCl2(H2L5)]Cl·2DMF) were elucidated by single crystal X-ray diffraction. The copper(II) complexes revealed low micro- to sub-micromolar IC50 values with promising selectivity toward human colon adenocarcinoma multidrug-resistant Colo320 cancer cells as compared to the doxorubicin-sensitive Colo205 cell line. The lead compounds HL4 and 4 as well as HL8 and 8 induced apoptosis efficiently in Colo320 cells. In addition, the copper(II) complexes had higher affinity to DNA than their metal-free ligands. HL8 showed selective inhibition for the PIM-1 enzyme, while 8 revealed strong inhibition of five other enzymes, i.e., SGK-1, PKA, CaMK-1, GSK3ß, and MSK1, from a panel of 50 kinases. Furthermore, molecular modeling of the ligands and complexes showed a good fit to the binding pockets of these targets.


Assuntos
Complexos de Coordenação/química , Cobre/química , Compostos Heterocíclicos com 3 Anéis/química , Inibidores de Proteínas Quinases/química , Quinolinas/química , Animais , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sítios de Ligação , Bovinos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Cristalografia por Raios X , DNA/química , DNA/metabolismo , Humanos , Indóis/química , Conformação Molecular , Simulação de Acoplamento Molecular , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Solubilidade , Relação Estrutura-Atividade
6.
Inorg Chem ; 61(3): 1456-1470, 2022 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-34995063

RESUMO

Indolo[2,3-d]benzazepines (indololatonduines) are rarely discussed in the literature. In this project, we prepared a series of novel indololatonduine derivatives and their RuII and OsII complexes and investigated their microtubule-targeting properties in comparison with paclitaxel and colchicine. Compounds were fully characterized by spectroscopic techniques (1H NMR and UV-vis), ESI mass-spectrometry, and X-ray crystallography, and their purity was confirmed by elemental analysis. The stabilities of the compounds in DMSO and water were confirmed by 1H and 13C NMR and UV-vis spectroscopy. Novel indololatonduines demonstrated anticancer activity in vitro in a low micromolar concentration range, while their coordination to metal centers resulted in a decrease of cytotoxicity. The preliminary in vivo activity of the RuII complex was investigated. Fluorescence staining and in vitro tubulin polymerization assays revealed the prepared compounds to have excellent microtubule-destabilizing activities, even more potent than the well-known microtubule-destabilizing agent colchicine.


Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Compostos Heterocíclicos com 3 Anéis/farmacologia , Indóis/farmacologia , Microtúbulos/efeitos dos fármacos , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Compostos Heterocíclicos com 3 Anéis/química , Humanos , Indóis/química , Neoplasias Mamárias Experimentais/tratamento farmacológico , Neoplasias Mamárias Experimentais/metabolismo , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Nus , Microscopia de Fluorescência , Microtúbulos/metabolismo , Modelos Moleculares , Estrutura Molecular , Polimerização/efeitos dos fármacos , Tubulina (Proteína)/metabolismo , Células Tumorais Cultivadas
7.
Dalton Trans ; 48(28): 10464-10478, 2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31125040

RESUMO

Four Schiff bases derived from 7-hydrazin-yl-5,8-dihydroindolo[2,3-d][2]benzazepin-(6H)-one and its bromo-substituted analogue (HL1-HL4) and four copper(ii) complexes 1-4 have been synthesised and fully characterised by standard spectroscopic methods (1H and 13C NMR, UV-vis), ESI mass spectrometry, single crystal X-ray diffraction and spectroelectrochemistry. In addition, two previously reported complexes with paullone ligands 5 and 6 were prepared and studied for comparison reasons. The CuII ion in 1-4 is five-coordinate and adopts a square-pyramidal or slightly distorted square-pyramidal coordination geometry. The ligands HL1-4 act as tridentate, the other two coordination places are occupied by two chlorido co-ligands. The organic ligands in 2 and 3 are bound tighter to copper(ii) when compared to related paullone ligands in 5 and 6. The new compounds show very strong cytotoxic activity against human colon adenocarcinoma doxorubicin-sensitive Colo 205 and multidrug resistant Colo 320 cancer cell lines with IC50 values in the low micromolar to nanomolar concentration range.


Assuntos
Antineoplásicos/farmacologia , Benzazepinas/química , Neoplasias do Colo/tratamento farmacológico , Complexos de Coordenação/farmacologia , Cobre/farmacologia , Indóis/química , Antineoplásicos/síntese química , Antineoplásicos/química , Benzazepinas/síntese química , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/patologia , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Cobre/química , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Ligantes , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...