Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Org Biomol Chem ; 21(44): 8829-8836, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37917021

RESUMO

An asymmetric cyanine-type fluorescent dye was designed and synthesized via a versatile, multi-step process, aiming to conjugate with an Her2+ receptor specific antibody by an azide-alkyne click reaction. The aromaticity and the excitation and relaxation energetics of the fluorophore were characterized by computational methods. The synthesized dye exhibited excellent fluorescence properties for confocal microscopy, offering efficient applicability in in vitro imaging due to its merits such as a high molar absorption coefficient (36 816 M-1 cm-1), excellent brightness, optimal wavelength (627 nm), larger Stokes shift (26 nm) and appropriate photostability compared to cyanines. The conjugated cyanine-trastuzumab was constructed via an effective, metal-free, strain-promoted azide-alkyne click reaction leading to a regulated number of dyes being conjugated. This novel cyanine-labelled antibody was successfully applied for in vitro confocal imaging and flow cytometry of Her2+ tumor cells.


Assuntos
Azidas , Corantes Fluorescentes , Carbocianinas , Anticorpos , Alcinos , Microscopia Confocal
3.
Front Synaptic Neurosci ; 15: 1233569, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635750

RESUMO

Epilepsy is a prevalent neurological condition, with underlying neuronal mechanisms involving hyperexcitability and hypersynchrony. Imbalance between excitatory and inhibitory circuits, as well as histological reorganization are relatively well-documented in animal models or even in the human hippocampus, but less is known about human neocortical epileptic activity. Our knowledge about changes in the excitatory signaling is especially scarce, compared to that about the inhibitory cell population. This study investigated the firing properties of single neurons in the human neocortex in vitro, during pharmacological blockade of glutamate receptors, and additionally evaluated anatomical changes in the excitatory circuit in tissue samples from epileptic and non-epileptic patients. Both epileptic and non-epileptic tissues exhibited spontaneous population activity (SPA), NMDA receptor antagonization reduced SPA recurrence only in epileptic tissue, whereas further blockade of AMPA/kainate receptors reversibly abolished SPA emergence regardless of epilepsy. Firing rates did not significantly change in excitatory principal cells and inhibitory interneurons during pharmacological experiments. Granular layer (L4) neurons showed an increased firing rate in epileptic compared to non-epileptic tissue. The burstiness of neurons remained unchanged, except for that of inhibitory cells in epileptic recordings, which decreased during blockade of glutamate receptors. Crosscorrelograms computed from single neuron discharge revealed both mono- and polysynaptic connections, particularly involving intrinsically bursting principal cells. Histological investigations found similar densities of SMI-32-immunopositive long-range projecting pyramidal cells in both groups, and shorter excitatory synaptic active zones with a higher proportion of perforated synapses in the epileptic group. These findings provide insights into epileptic modifications from the perspective of the excitatory system and highlight discrete alterations in firing patterns and synaptic structure. Our data suggest that NMDA-dependent glutamatergic signaling, as well as the excitatory synaptic machinery are perturbed in epilepsy, which might contribute to epileptic activity in the human neocortex.

4.
ACS Omega ; 8(25): 22836-22843, 2023 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-37396252

RESUMO

A novel family of julolidine-containing fluorescent rhodols equipped with a wide variety of substituents was synthesized in a versatile two-step process. The prepared compounds were fully characterized and exhibited excellent fluorescence properties for microscopy imaging. The best candidate was conjugated to the therapeutic antibody trastuzumab through a copper-free strain-promoted azide-alkyne click reaction. The rhodol-labeled antibody was successfully applied for in vitro confocal and two-photon microscopy imaging of Her2+ cells.

5.
J Physiol ; 601(15): 3351-3376, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36511176

RESUMO

Although electrophysiologists have been recording intracellular neural activity routinely ever since the ground-breaking work of Hodgkin and Huxley, and extracellular multichannel electrodes have also been used frequently and extensively, a practical experimental method to track changes in membrane potential along a complete single neuron is still lacking. Instead of obtaining multiple intracellular measurements on the same neuron, we propose an alternative method by combining single-channel somatic patch-clamp and multichannel extracellular potential recordings. In this work, we show that it is possible to reconstruct the complete spatiotemporal distribution of the membrane potential of a single neuron with the spatial resolution of an extracellular probe during action potential generation. Moreover, the reconstruction of the membrane potential allows us to distinguish between the two major but previously hidden components of the current source density (CSD) distribution: the resistive and the capacitive currents. This distinction provides a clue to the clear interpretation of the CSD analysis, because the resistive component corresponds to transmembrane ionic currents (all the synaptic, voltage-sensitive and passive currents), whereas capacitive currents are considered to be the main contributors of counter-currents. We validate our model-based reconstruction approach on simulations and demonstrate its application to experimental data obtained in vitro via paired extracellular and intracellular recordings from a single pyramidal cell of the rat hippocampus. In perspective, the estimation of the spatial distribution of resistive membrane currents makes it possible to distiguish between active and passive sinks and sources of the CSD map and the localization of the synaptic input currents, which make the neuron fire. KEY POINTS: A new computational method is introduced to calculate the unbiased current source density distribution on a single neuron with known morphology. The relationship between extracellular and intracellular electric potential is determined via mathematical formalism, and a new reconstruction method is applied to reveal the full spatiotemporal distribution of the membrane potential and the resistive and capacitive current components. The new reconstruction method was validated on simulations. Simultaneous and colocalized whole-cell patch-clamp and multichannel silicon probe recordings were performed from the same pyramidal neuron in the rat hippocampal CA1 region, in vitro. The method was applied in experimental measurements and returned precise and distinctive characteristics of various intracellular phenomena, such as action potential generation, signal back-propagation and the initial dendritic depolarization preceding the somatic action potential.


Assuntos
Neurônios , Células Piramidais , Ratos , Animais , Potenciais da Membrana/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Potenciais de Ação , Hipocampo/fisiologia
6.
Sci Rep ; 12(1): 6280, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35428851

RESUMO

Knowledge about the activity of single neurons is essential in understanding the mechanisms of synchrony generation, and particularly interesting if related to pathological conditions. The generation of interictal spikes-the hypersynchronous events between seizures-is linked to hyperexcitability and to bursting behaviour of neurons in animal models. To explore its cellular mechanisms in humans we investigated the activity of clustered single neurons in a human in vitro model generating both physiological and epileptiform synchronous events. We show that non-epileptic synchronous events resulted from the finely balanced firing of excitatory and inhibitory cells, which was shifted towards an enhanced excitability in epileptic tissue. In contrast, interictal-like spikes were characterised by an asymmetric overall neuronal discharge initiated by excitatory neurons with the presumptive leading role of bursting pyramidal cells, and possibly terminated by inhibitory interneurons. We found that the overall burstiness of human neocortical neurons is not necessarily related to epilepsy, but the bursting behaviour of excitatory cells comprising both intrinsic and synaptically driven bursting is clearly linked to the generation of epileptiform synchrony.


Assuntos
Epilepsia , Potenciais de Ação/fisiologia , Animais , Epilepsia/patologia , Humanos , Interneurônios/patologia , Neurônios/fisiologia , Células Piramidais/fisiologia
7.
Eur J Med Chem ; 231: 114163, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35131537

RESUMO

Intrinsically disordered proteins (IDPs) play important roles in disease pathologies; however, their lack of defined stable 3D structures make traditional drug design strategies typically less effective against these targets. Based on promising results of targeted covalent inhibitors (TCIs) on challenging targets, we have developed a covalent design strategy targeting IDPs. As a model system we chose tau, an endogenous IDP of the central nervous system that is associated with severe neurodegenerative diseases via its aggregation. First, we mapped the tractability of available cysteines in tau and prioritized suitable warheads. Next, we introduced the selected vinylsulfone warhead to the non-covalent scaffolds of potential tau aggregation inhibitors. The designed covalent tau binders were synthesized and tested in aggregation models, and inhibited tau aggregation effectively. Our results revealed the usefulness of the covalent design strategy against therapeutically relevant IDP targets and provided promising candidates for the treatment of tauopathies.


Assuntos
Proteínas Intrinsicamente Desordenadas , Doenças Neurodegenerativas , Tauopatias , Cisteína , Desenho de Fármacos , Humanos , Proteínas Intrinsicamente Desordenadas/química , Doenças Neurodegenerativas/metabolismo , Tauopatias/tratamento farmacológico , Proteínas tau/metabolismo
8.
RSC Adv ; 11(21): 12802-12807, 2021 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35423835

RESUMO

The first representatives of the new fluorescent boro-ß-carboline family were synthesized by the insertion of the difluoroboranyl group into the oxaza or diaza core. The resulting compounds showed good photophysical properties with fine Stokes-shifts in the range of 38-85 nm with blue and green emission. The energetics of the excitation states and molecular orbitals of two members were investigated by quantum chemical computations suggesting effects for the improved properties of diazaborinino-carbolines over oxazaborolo-carbolines. These properties nominated this chemotype as a new fluorophore for the development of fluorescent probes. As an example, diazaborinino-carbolines were used for the specific labeling of anti-Her2 antibody trastuzumab. The fluorescent conjugate showed a high fluorophore-antibody ratio and was confirmed as a useful tool for labeling and confocal microscopy imaging of tumour cells in vitro together with the ex vivo two-photon microscopy imaging of tumour slices.

9.
Int J Mol Sci ; 23(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35008628

RESUMO

Inhibitory neurons innervating the perisomatic region of cortical excitatory principal cells are known to control the emergence of several physiological and pathological synchronous events, including epileptic interictal spikes. In humans, little is known about their role in synchrony generation, although their changes in epilepsy have been thoroughly investigated. This paper demonstraits how parvalbumin (PV)- and type 1 cannabinoid receptor (CB1R)-positive perisomatic interneurons innervate pyramidal cell bodies, and their role in synchronous population events spontaneously emerging in the human epileptic and non-epileptic neocortex, in vitro. Quantitative electron microscopy showed that the overall, PV+ and CB1R+ somatic inhibitory inputs remained unchanged in focal cortical epilepsy. On the contrary, the size of PV-stained synapses increased, and their number decreased in epileptic samples, in synchrony generating regions. Pharmacology demonstrated-in conjunction with the electron microscopy-that although both perisomatic cell types participate, PV+ cells have stronger influence on the generation of population activity in epileptic samples. The somatic inhibitory input of neocortical pyramidal cells remained almost intact in epilepsy, but the larger and consequently more efficient somatic synapses might account for a higher synchrony in this neuron population. This, together with epileptic hyperexcitability, might make a cortical region predisposed to generate or participate in hypersynchronous events.


Assuntos
Sincronização Cortical/fisiologia , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Inibição Neural/fisiologia , Potenciais de Ação , Adulto , Idoso , Idoso de 80 Anos ou mais , Epilepsia/patologia , Feminino , Humanos , Interneurônios/metabolismo , Interneurônios/ultraestrutura , Masculino , Pessoa de Meia-Idade , Neocórtex/patologia , Neocórtex/ultraestrutura , Parvalbuminas/metabolismo , Receptores de Canabinoides/metabolismo , Sinapses/patologia , Sinapses/ultraestrutura
10.
Neuroimage ; 226: 117587, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33249216

RESUMO

Sleep spindles are functionally important NREM sleep EEG oscillations which are generated in thalamocortical, corticothalamic and possibly cortico-cortical circuits. Previous hypotheses suggested that slow and fast spindles or spindles with various spatial extent may be generated in different circuits with various cortical laminar innervation patterns. We used NREM sleep EEG data recorded from four human epileptic patients undergoing presurgical electrophysiological monitoring with subdural electrocorticographic grids (ECoG) and implanted laminar microelectrodes penetrating the cortex (IME). The position of IMEs within cortical layers was confirmed using postsurgical histological reconstructions. Many spindles detected on the IME occurred only in one layer and were absent from the ECoG, but with increasing amplitude simultaneous detection in other layers and on the ECoG became more likely. ECoG spindles were in contrast usually accompanied by IME spindles. Neither IME nor ECoG spindle cortical profiles were strongly associated with sleep spindle frequency or globality. Multiple-unit and single-unit activity during spindles, however, was heterogeneous across spindle types, but also across layers and patients. Our results indicate that extremely local spindles may occur in any cortical layer, but co-occurrence at other locations becomes likelier with increasing amplitude and the relatively large spindles detected on ECoG channels have a stereotypical laminar profile. We found no compelling evidence that different spindle types are associated with different laminar profiles, suggesting that they are generated in cortical and thalamic circuits with similar cortical innervation patterns. Local neuronal activity is a stronger candidate mechanism for driving functional differences between spindles subtypes.


Assuntos
Epilepsia Resistente a Medicamentos , Córtex Pré-Frontal/fisiologia , Sono/fisiologia , Adolescente , Adulto , Mapeamento Encefálico , Córtex Cerebral/fisiologia , Criança , Eletrocorticografia , Eletrodos Implantados , Eletroencefalografia , Feminino , Lobo Frontal/fisiologia , Humanos , Masculino , Vias Neurais , Adulto Jovem
11.
Epilepsy Res ; 169: 106509, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33310654

RESUMO

OBJECTIVE: The goal of this study was to define the pathology and anesthesia dependency of single pulse electrical stimulation (SPES) dependent high-frequency oscillations (HFOs, ripples, fast ripples) in the hippocampal formation. METHODS: Laminar profile of electrically evoked short latency (<100 ms) high-frequency oscillations (80-500 Hz) was examined in the hippocampus of therapy-resistant epileptic patients (6 female, 2 male) in vivo, under general anesthesia. RESULTS: Parahippocampal SPES evoked HFOs in all recorded hippocampal subregions (Cornu Ammonis 2-3, dentate gyrus, and subiculum) were not uniform, rather the combination of ripples, fast ripples, sharp transients, and multiple unit activities. Mild and severe hippocampal sclerosis (HS) differed in the probability to evoke fast ripples: it decreased with the severity of sclerosis in CA2-3 but increased in the subiculum. Modulation in the ripple spectrum was observed only in the subiculum with increased fast HFO rate and frequency in severe HS. Inhalational anesthetics (isoflurane) suppressed the chance to evoke HFOs compared to propofol. CONCLUSION: The presence of early HFOs in the dentate gyrus and early fast HFOs (>250 Hz) in the other subregions indicate the pathological nature of these evoked oscillations. Subiculum was found to be active producing HFOs in parallel with the cell loss in the hippocampus proper, which emphasize the role of this region in the generation of epileptic activity.


Assuntos
Epilepsia , Estimulação Elétrica , Eletroencefalografia , Feminino , Hipocampo , Humanos , Masculino , Propofol , Esclerose
12.
Mater Sci Eng C Mater Biol Appl ; 112: 110870, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32409039

RESUMO

The use of SU-8 material in the production of neural sensors has grown recently. Despite its widespread application, a detailed systematic quantitative analysis concerning its biocompatibility in the central nervous system is lacking. In this immunohistochemical study, we quantified the neuronal preservation and the severity of astrogliosis around SU-8 devices implanted in the neocortex of rats, after a 2 months survival. We found that the density of neurons significantly decreased up to a distance of 20 µm from the implant, with an averaged density decrease to 24 ±â€¯28% of the control. At 20 to 40 µm distance from the implant, the majority of the neurons was preserved (74 ±â€¯39% of the control) and starting from 40 µm distance from the implant, the neuron density was control-like. The density of synaptic contacts - examined at the electron microscopic level - decreased in the close vicinity of the implant, but it recovered to the control level as close as 24 µm from the implant track. The intensity of the astroglial staining significantly increased compared to the control region, up to 560 µm and 480 µm distance from the track in the superficial and deep layers of the neocortex, respectively. Electron microscopic examination revealed that the thickness of the glial scar was around 5-10 µm thin, and the ratio of glial processes in the neuropil was not more than 16% up to a distance of 12 µm from the implant. Our data suggest that neuronal survival is affected only in a very small area around the implant. The glial scar surrounding the implant is thin, and the presence of glial elements is low in the neuropil, although the signs of astrogliosis could be observed up to about 500 µm from the track. Subsequently, the biocompatibility of the SU-8 material is high. Due to its low cost fabrication and more flexible nature, SU-8 based devices may offer a promising approach to experimental and clinical applications in the future.


Assuntos
Materiais Biocompatíveis/farmacologia , Compostos de Epóxi/química , Neurônios/efeitos dos fármacos , Polímeros/química , Animais , Materiais Biocompatíveis/química , Encéfalo/patologia , Compostos de Epóxi/farmacologia , Feminino , Masculino , Microscopia Eletrônica de Varredura , Neuroglia/citologia , Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neuroglia/ultraestrutura , Neurônios/citologia , Neurônios/metabolismo , Neurônios/patologia , Polímeros/farmacologia , Próteses e Implantes , Ratos , Ratos Wistar
13.
Proc Natl Acad Sci U S A ; 116(47): 23772-23782, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685634

RESUMO

The alpha rhythm is the longest-studied brain oscillation and has been theorized to play a key role in cognition. Still, its physiology is poorly understood. In this study, we used microelectrodes and macroelectrodes in surgical epilepsy patients to measure the intracortical and thalamic generators of the alpha rhythm during quiet wakefulness. We first found that alpha in both visual and somatosensory cortex propagates from higher-order to lower-order areas. In posterior cortex, alpha propagates from higher-order anterosuperior areas toward the occipital pole, whereas alpha in somatosensory cortex propagates from associative regions toward primary cortex. Several analyses suggest that this cortical alpha leads pulvinar alpha, complicating prevailing theories of a thalamic pacemaker. Finally, alpha is dominated by currents and firing in supragranular cortical layers. Together, these results suggest that the alpha rhythm likely reflects short-range supragranular feedback, which propagates from higher- to lower-order cortex and cortex to thalamus. These physiological insights suggest how alpha could mediate feedback throughout the thalamocortical system.


Assuntos
Ritmo alfa , Córtex Cerebral/fisiologia , Eletrodos , Eletroencefalografia , Humanos , Tálamo/fisiologia
14.
J Physiol ; 597(23): 5639-5670, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31523807

RESUMO

KEY POINTS: •Initiation of pathological synchronous events such as epileptic spikes and seizures is linked to the hyperexcitability of the neuronal network in both humans and animals. •In the present study, we show that epileptiform interictal-like spikes and seizures emerged in human neocortical slices by blocking GABAA receptors, following the disappearance of the spontaneously occurring synchronous population activity. •Large variability of temporally and spatially simple and complex spikes was generated by tissue from epileptic patients, whereas only simple events appeared in samples from non-epileptic patients. •Physiological population activity was associated with a moderate level of principal cell and interneuron firing, with a slight dominance of excitatory neuronal activity, whereas epileptiform events were mainly initiated by the synchronous and intense discharge of inhibitory cells. •These results help us to understand the role of excitatory and inhibitory neurons in synchrony-generating mechanisms, in both epileptic and non-epileptic conditions. ABSTRACT: Understanding the role of different neuron types in synchrony generation is crucial for developing new therapies aiming to prevent hypersynchronous events such as epileptic seizures. Paroxysmal activity was linked to hyperexcitability and to bursting behaviour of pyramidal cells in animals. Human data suggested a leading role of either principal cells or interneurons, depending on the seizure morphology. In the present study, we aimed to uncover the role of excitatory and inhibitory processes in synchrony generation by analysing the activity of clustered single neurons during physiological and epileptiform synchronies in human neocortical slices. Spontaneous population activity was detected with a 24-channel laminar microelectrode in tissue derived from patients with or without preoperative clinical manifestations of epilepsy. This population activity disappeared by blocking GABAA receptors, and several variations of spatially and temporally simple or complex interictal-like spikes emerged in epileptic tissue, whereas peritumoural slices generated only simple spikes. Around one-half of the clustered neurons participated with an elevated firing rate in physiological synchronies with a slight dominance of excitatory cells. By contrast, more than 90% of the neurons contributed to interictal-like spikes and seizures, and an intense and synchronous discharge of inhibitory neurons was associated with the start of these events. Intrinsically bursting principal cells fired later than other neurons. Our data suggest that a balanced excitation and inhibition characterized physiological synchronies, whereas disinhibition-induced epileptiform events were initiated mainly by non-synaptically synchronized inhibitory neurons. Our results further highlight the differences between humans and animal models, and between in vivo and (pharmacologically manipulated) in vitro conditions.


Assuntos
Epilepsia/fisiopatologia , Neocórtex/fisiologia , Adulto , Idoso , Bicuculina/farmacologia , Feminino , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Masculino , Pessoa de Meia-Idade , Neocórtex/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Receptores de GABA-A/fisiologia , Adulto Jovem
15.
J Neurosci ; 38(12): 3013-3025, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29449429

RESUMO

Sleep spindles are a cardinal feature in human NREM sleep and may be important for memory consolidation. We studied the intracortical organization of spindles in men and women by recording spontaneous sleep spindles from different cortical layers using linear microelectrode arrays. Two patterns of spindle generation were identified using visual inspection, and confirmed with factor analysis. Spindles (10-16 Hz) were largest and most common in upper and middle channels, with limited involvement of deep channels. Many spindles were observed in only upper or only middle channels, but approximately half occurred in both. In spindles involving both middle and upper channels, the spindle envelope onset in middle channels led upper by ∼25-50 ms on average. The phase relationship between spindle waves in upper and middle channels varied dynamically within spindle epochs, and across individuals. Current source density analysis demonstrated that upper and middle channel spindles were both generated by an excitatory supragranular current sink while an additional deep source was present for middle channel spindles only. Only middle channel spindles were accompanied by deep low (25-50 Hz) and high (70-170 Hz) gamma activity. These results suggest that upper channel spindles are generated by supragranular pyramids, and middle channel by infragranular. Possibly, middle channel spindles are generated by core thalamocortical afferents, and upper channel by matrix. The concurrence of these patterns could reflect engagement of cortical circuits in the integration of more focal (core) and distributed (matrix) aspects of memory. These results demonstrate that at least two distinct intracortical systems generate human sleep spindles.SIGNIFICANCE STATEMENT Bursts of ∼14 Hz oscillations, lasting ∼1 s, have been recognized for over 80 years as cardinal features of mammalian sleep. Recent findings suggest that they play a key role in organizing cortical activity during memory consolidation. We used linear microelectrode arrays to study their intracortical organization in humans. We found that spindles could be divided into two types. One mainly engages upper layers of the cortex, which are considered to be specialized for associative activity. The other engages both upper and middle layers, including those devoted to sensory input. The interaction of these two spindle types may help organize the interaction of sensory and associative aspects of memory consolidation.


Assuntos
Córtex Cerebral/fisiologia , Consolidação da Memória/fisiologia , Sono/fisiologia , Adolescente , Adulto , Feminino , Humanos , Masculino , Adulto Jovem
16.
J Physiol ; 596(2): 317-342, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29178354

RESUMO

KEY POINTS: Hyperexcitability and hypersynchrony of neuronal networks are thought to be linked to the generation of epileptic activity in both humans and animal models. Here we show that human epileptic postoperative neocortical tissue is able to generate two different types of synchronies in vitro. Epileptiform bursts occurred only in slices derived from epileptic patients and were hypersynchronous events characterized by high levels of excitability. Spontaneous population activity emerged in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. These results help us to understand better the role of excitatory and inhibitory neuronal circuits in the generation of population events, and to define the subtle border between physiological and pathological synchronies. ABSTRACT: Interictal activity is a hallmark of epilepsy diagnostics and is linked to neuronal hypersynchrony. Little is known about perturbations in human epileptic neocortical microcircuits, and their role in generating pathological synchronies. To explore hyperexcitability of the human epileptic network, and its contribution to convulsive activity, we investigated an in vitro model of synchronous burst activity spontaneously occurring in postoperative tissue slices derived from patients with or without preoperative clinical and electrographic manifestations of epileptic activity. Human neocortical slices generated two types of synchronies. Interictal-like discharges (classified as epileptiform events) emerged only in epileptic samples, and were hypersynchronous bursts characterized by considerably elevated levels of excitation. Synchronous population activity was initiated in both epileptic and non-epileptic tissue, with a significantly lower degree of excitability and synchrony, and could not be linked to epilepsy. However, in pharmacoresistant epileptic tissue, a higher percentage of slices exhibited population activity, with higher local field potential gradient amplitudes. More intracellularly recorded neurons received depolarizing synaptic potentials, discharging more reliably during the events. Light and electron microscopic examinations showed slightly lower neuron densities and higher densities of excitatory synapses in the human epileptic neocortex. Our data suggest that human neocortical microcircuits retain their functionality and plasticity in vitro, and can generate two significantly different synchronies. We propose that population bursts might not be pathological events while interictal-like discharges may reflect the epileptogenicity of the human cortex. Our results show that hyperexcitability characterizes the human epileptic neocortical network, and that it is closely related to the emergence of synchronies.


Assuntos
Potenciais de Ação , Excitabilidade Cortical , Epilepsia/fisiopatologia , Neocórtex/fisiopatologia , Rede Nervosa/fisiopatologia , Sinapses/fisiologia , Adolescente , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Elife ; 62017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29148974

RESUMO

Revealing the current source distribution along the neuronal membrane is a key step on the way to understanding neural computations; however, the experimental and theoretical tools to achieve sufficient spatiotemporal resolution for the estimation remain to be established. Here, we address this problem using extracellularly recorded potentials with arbitrarily distributed electrodes for a neuron of known morphology. We use simulations of models with varying complexity to validate the proposed method and to give recommendations for experimental applications. The method is applied to in vitro data from rat hippocampus.


Assuntos
Hipocampo/fisiologia , Potenciais da Membrana , Neurônios/fisiologia , Animais , Simulação por Computador , Técnicas de Patch-Clamp , Ratos Wistar
19.
Biomed Res Int ; 2017: 7154295, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28116310

RESUMO

GABAergic inhibition and particularly perisomatic inhibition play a crucial role in controlling the firing properties of large principal cell populations. Furthermore, GABAergic network is a key element in the therapy attempting to reduce epileptic activity. Here, we present a review showing the synaptic changes of perisomatic inhibitory neuronal subtypes in the hippocampus of temporal lobe epileptic patients, including parvalbumin- (PV-) containing and cannabinoid Type 1 (CB1) receptor-expressing (and mainly cholecystokinin-positive) perisomatic inhibitory cells, known to control hippocampal synchronies. We have examined the synaptic input of principal cells in the dentate gyrus and Cornu Ammonis region in human control and epileptic hippocampi. Perisomatic inhibitory terminals establishing symmetric synapses were found to be sprouted in the dentate gyrus. Preservation of perisomatic input was found in the Cornu Ammonis 1 and Cornu Ammonis 2 regions, as long as pyramidal cells are present. Higher density of CB1-immunostained terminals was found in the epileptic hippocampus of sclerotic patients, especially in the dentate gyrus. We concluded that both types of (PV- and GABAergic CB1-containing) perisomatic inhibitory cells are mainly preserved or showed sprouting in epileptic samples. The enhanced perisomatic inhibitory signaling may increase principal cell synchronization and contribute to generation of epileptic seizures and interictal spikes.


Assuntos
Dendritos/metabolismo , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/fisiopatologia , Sinapses/metabolismo , Lobo Temporal/fisiopatologia , Autopsia , Axônios/metabolismo , Mapeamento Encefálico , Colecistocinina/metabolismo , Giro Denteado/embriologia , Neurônios GABAérgicos/metabolismo , Hipocampo/metabolismo , Humanos , Imuno-Histoquímica , Neurônios/metabolismo , Parvalbuminas/metabolismo , Células Piramidais/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptores de GABA/metabolismo , Transdução de Sinais
20.
J Neurophysiol ; 116(5): 2312-2330, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27535370

RESUMO

Recording simultaneous activity of a large number of neurons in distributed neuronal networks is crucial to understand higher order brain functions. We demonstrate the in vivo performance of a recently developed electrophysiological recording system comprising a two-dimensional, multi-shank, high-density silicon probe with integrated complementary metal-oxide semiconductor electronics. The system implements the concept of electronic depth control (EDC), which enables the electronic selection of a limited number of recording sites on each of the probe shafts. This innovative feature of the system permits simultaneous recording of local field potentials (LFP) and single- and multiple-unit activity (SUA and MUA, respectively) from multiple brain sites with high quality and without the actual physical movement of the probe. To evaluate the in vivo recording capabilities of the EDC probe, we recorded LFP, MUA, and SUA in acute experiments from cortical and thalamic brain areas of anesthetized rats and mice. The advantages of large-scale recording with the EDC probe are illustrated by investigating the spatiotemporal dynamics of pharmacologically induced thalamocortical slow-wave activity in rats and by the two-dimensional tonotopic mapping of the auditory thalamus. In mice, spatial distribution of thalamic responses to optogenetic stimulation of the neocortex was examined. Utilizing the benefits of the EDC system may result in a higher yield of useful data from a single experiment compared with traditional passive multielectrode arrays, and thus in the reduction of animals needed for a research study.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Eletrodos Implantados , Rede Nervosa/fisiologia , Silício , Tálamo/fisiologia , Estimulação Acústica/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Transgênicos , Optogenética/métodos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...