Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 110(8): E687-96, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23386725

RESUMO

DNA polymerase ζ (polζ) is critical for bypass of DNA damage and the associated mutagenesis, but also has unique functions in mammals. It is required for embryonic development and for viability of hematopoietic cells, but, paradoxically, skin epithelia appear to survive polζ deletion. We wished to determine whether polζ functions in a tissue-specific manner and how polζ status influences skin tumorigenesis. Mice were produced in which Rev3L (the catalytic subunit of polζ) was deleted in tissues expressing keratin 5. Efficient epidermal deletion of Rev3L was tolerated but led to skin and hair abnormalities, accompanied by evidence of DNA breaks. Unchallenged mice developed tumors in keratin 5-expressing tissues with age, consistent with the chromosomal instability accompanying a polζ defect. Unexpectedly, mice with the Rev3L deletion were much more sensitive to UVB radiation than mice defective in other DNA repair genes. Following irradiation, polζ-defective mice failed to mount skin-regenerative responses and responded to stress by mobilizing melanocytes to the epidermis. However, they did not develop skin tumors after chronic UVB irradiation. To determine the proliferative potential of polζ-deficient skin epithelia, keratinocytes were isolated and examined. These keratinocytes harbored chromosomal gaps and breaks and exhibited a striking proliferation defect. These results can be unified by a model in which slowly dividing cells accumulate replication-associated DNA breaks but otherwise survive Rev3L deletion, but functional polζ is essential for responses requiring rapid proliferation, both in cell culture and in vivo. The results reveal a biological role for mammalian polζ in tolerating DNA damage and enabling proliferative responses in vivo.


Assuntos
Proliferação de Células , Instabilidade Genômica , Animais , Carcinoma de Células Escamosas/genética , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/metabolismo , Deleção de Genes , Camundongos , Neoplasias Cutâneas/genética , Raios Ultravioleta
2.
Nucleic Acids Res ; 40(10): 4473-82, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22319213

RESUMO

Unique among translesion synthesis (TLS) DNA polymerases, pol ζ is essential during embryogenesis. To determine whether pol ζ is necessary for proliferation of normal cells, primary mouse fibroblasts were established in which Rev3L could be conditionally inactivated by Cre recombinase. Cells were grown in 2% O(2) to prevent oxidative stress-induced senescence. Cells rapidly became senescent or apoptotic and ceased growth within 3-4 population doublings. Within one population doubling following Rev3L deletion, DNA double-strand breaks and chromatid aberrations were found in 30-50% of cells. These breaks were replication dependent, and found in G1 and G2 phase cells. Double-strand breaks were reduced when cells were treated with the reactive oxygen species scavenger N-acetyl-cysteine, but this did not rescue the cell proliferation defect, indicating that several classes of endogenously formed DNA lesions require Rev3L for tolerance or repair. T-antigen immortalization of cells allowed cell growth. In summary, even in the absence of external challenges to DNA, pol ζ is essential for preventing replication-dependent DNA breaks in every division of normal mammalian cells. Loss of pol ζ in slowly proliferating mouse cells in vivo may allow accumulation of chromosomal aberrations that could lead to tumorigenesis. Pol ζ is unique amongst TLS polymerases for its essential role in cell proliferation.


Assuntos
Proliferação de Células , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/fisiologia , Animais , Antígenos Virais de Tumores/genética , Apoptose , Divisão Celular , Células Cultivadas , Senescência Celular , Cromátides , Quebras de DNA de Cadeia Dupla , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/genética , Deleção de Genes , Camundongos , Espécies Reativas de Oxigênio/metabolismo
3.
Cancer Res ; 70(7): 2770-8, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20215524

RESUMO

Mammalian genomes encode at least 15 distinct DNA polymerases, functioning as specialists in DNA replication, DNA repair, recombination, or bypass of DNA damage. Although the DNA polymerase zeta (polzeta) catalytic subunit REV3L is important in defense against genotoxins, little is known of its biological function. This is because REV3L is essential during embryogenesis, unlike other translesion DNA polymerases. Outstanding questions include whether any adult cells are viable in the absence of polzeta and whether polzeta status influences tumorigenesis. REV3L-deficient cells have properties that could influence the development of neoplasia in opposing ways: markedly reduced damage-induced point mutagenesis and extensive chromosome instability. To answer these questions, Rev3L was conditionally deleted from tissues of adult mice using MMTV-Cre. Loss of REV3L was tolerated in epithelial tissues but not in the hematopoietic lineage. Thymic lymphomas in Tp53(-/-) Rev3L conditional mice occurred with decreased latency and higher incidence. The lymphomas were populated predominantly by Rev3L-null T cells, showing that loss of Rev3L can promote tumorigenesis. Remarkably, the tumors were frequently oligoclonal, consistent with accelerated genetic changes in the absence of Rev3L. Mammary tumors could also arise from Rev3L-deleted cells in both Tp53(+/+) and Tp53(+/-) backgrounds. Mammary tumors in Tp53(+/-) mice deleting Rev3L formed months earlier than mammary tumors in Tp53(+/-) control mice. Prominent preneoplastic changes in glandular tissue adjacent to these tumors occurred only in mice deleting Rev3L and were associated with increased tumor multiplicity. Polzeta is the only specialized DNA polymerase yet identified that inhibits spontaneous tumor development.


Assuntos
Linfoma/enzimologia , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias do Timo/enzimologia , Alelos , Animais , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/metabolismo , Feminino , Linfoma/patologia , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Lesões Pré-Cancerosas/enzimologia , Lesões Pré-Cancerosas/patologia , Neoplasias do Timo/patologia , Proteína Supressora de Tumor p53/genética
4.
Radiat Res ; 172(2): 165-74, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19630521

RESUMO

Abstract Mammalian POLQ (pol theta) is a specialized DNA polymerase with an unknown function in vivo. Roles have been proposed in chromosome stability, as a backup enzyme in DNA base excision repair, and in somatic hypermutation of immunoglobulin genes. The purified enzyme can bypass AP sites and thymine glycol. Mice defective in POLQ are viable and have been reported to have elevated spontaneous and radiation-induced frequencies of micronuclei in circulating red blood cells. To examine the potential roles of POLQ in hematopoiesis and in responses to oxidative stress responses, including ionizing radiation, bone marrow cultures and marrow stromal cell lines were established from Polq(+/+) and Polq(-/-) mice. Aging of bone marrow cultures was not altered, but Polq(-/-) cells were more sensitive to gamma radiation than were Polq(+/+) cells. The D(0) was 1.38 +/- 0.06 Gy for Polq(+/+) cells compared to 1.27 +/- 0.16 and 0.98 +/- 0.10 Gy (P = 0.032) for two Polq(-/-) clones. Polq(-/-) cells were moderately more sensitive to bleomycin than Polq(+/+) cells and were not hypersensitive to paraquat or hydrogen peroxide. ATM kinase activation appeared to be normal in gamma-irradiated Polq(-/-) cells. Inhibition of ATM kinase activity increased the radiosensitivity of Polq(+/+) cells slightly but did not affect Polq(-/-) cells. Polq(-/-) mice had more spontaneous and radiation-induced micronucleated reticulocytes than Polq+/+ and (+/-) mice. The sensitivity of POLQ-defective bone marrow stromal cells to ionizing radiation and bleomycin and the increase in micronuclei in red blood cells support a role for this DNA polymerase in cellular tolerance of DNA damage that can lead to double-strand DNA breaks.


Assuntos
Células da Medula Óssea/efeitos da radiação , DNA Polimerase Dirigida por DNA/metabolismo , Micronúcleos com Defeito Cromossômico/efeitos da radiação , Tolerância a Radiação/fisiologia , Reticulócitos/efeitos da radiação , Irradiação Corporal Total , Animais , Células da Medula Óssea/citologia , Sobrevivência Celular/efeitos da radiação , Células Cultivadas , DNA Polimerase Dirigida por DNA/genética , Relação Dose-Resposta à Radiação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Doses de Radiação , Reticulócitos/citologia , DNA Polimerase teta
5.
EMBO J ; 28(4): 383-93, 2009 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-19153606

RESUMO

DNA replication across blocking lesions occurs by translesion DNA synthesis (TLS), involving a multitude of mutagenic DNA polymerases that operate to protect the mammalian genome. Using a quantitative TLS assay, we identified three main classes of TLS in human cells: two rapid and error-free, and the third slow and error-prone. A single gene, REV3L, encoding the catalytic subunit of DNA polymerase zeta (pol zeta), was found to have a pivotal role in TLS, being involved in TLS across all lesions examined, except for a TT cyclobutane dimer. Genetic epistasis siRNA analysis indicated that discrete two-polymerase combinations with pol zeta dictate error-prone or error-free TLS across the same lesion. These results highlight the central role of pol zeta in both error-prone and error-free TLS in mammalian cells, and show that bypass of a single lesion may involve at least three different DNA polymerases, operating in different two-polymerase combinations.


Assuntos
Dano ao DNA , Replicação do DNA , DNA Polimerase Dirigida por DNA/metabolismo , DNA/química , DNA/metabolismo , Animais , Linhagem Celular Tumoral , DNA Polimerase Dirigida por DNA/química , Dimerização , Epistasia Genética , Humanos , Cinética , Camundongos , Mutagênese , Dímeros de Pirimidina/química , RNA Interferente Pequeno/metabolismo , Proteína de Xeroderma Pigmentoso Grupo A/metabolismo
6.
Cell Res ; 18(1): 174-83, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18157155

RESUMO

Most current knowledge about DNA polymerase zeta (pol zeta) comes from studies of the enzyme in the budding yeast Saccharomyces cerevisiae, where pol zeta consists of a complex of the catalytic subunit Rev3 with Rev7, which associates with Rev1. Most spontaneous and induced mutagenesis in yeast is dependent on these gene products, and yeast pol zeta can mediate translesion DNA synthesis past some adducts in DNA templates. Study of the homologous gene products in higher eukaryotes is in a relatively early stage, but additional functions for the eukaryotic proteins are already apparent. Suppression of vertebrate REV3L function not only reduces induced point mutagenesis but also causes larger-scale genome instability by raising the frequency of spontaneous chromosome translocations. Disruption of Rev3L function is tolerated in Drosophila, Arabidopsis, and in vertebrate cell lines under some conditions, but is incompatible with mouse embryonic development. Functions for REV3L and REV7(MAD2B) in higher eukaryotes have been suggested not only in translesion DNA synthesis but also in some forms of homologous recombination, repair of interstrand DNA crosslinks, somatic hypermutation of immunoglobulin genes and cell-cycle control. This review discusses recent developments in these areas.


Assuntos
Células Eucarióticas/enzimologia , Animais , Troca Genética/genética , Reparo do DNA/fisiologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , DNA Polimerase Dirigida por DNA/genética , DNA Polimerase Dirigida por DNA/fisiologia , Humanos , Proteínas Mad2 , Modelos Biológicos , Proteínas Nucleares , Nucleotidiltransferases/genética , Nucleotidiltransferases/fisiologia , Proteínas/genética , Proteínas/fisiologia , Recombinação Genética/fisiologia , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética
7.
Cancer Res ; 66(1): 134-42, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16397225

RESUMO

Rev3L encodes the catalytic subunit of DNA polymerase zeta (pol zeta) in mammalian cells. In yeast, pol zeta helps cells bypass sites of DNA damage that can block replication enzymes. Targeted disruption of the mouse Rev3L gene causes lethality midway through embryonic gestation, and Rev3L-/- mouse embryonic fibroblasts (MEFs) remain in a quiescent state in culture. This suggests that pol zeta may be necessary for tolerance of endogenous DNA damage during normal cell growth. We report the generation of mitotically active Rev3L-/- MEFs on a p53-/- genetic background. Rev3L null MEFs exhibited striking chromosomal instability, with a large increase in translocation frequency. Many complex genetic aberrations were found only in Rev3L null cells. Rev3L null cells had increased chromosome numbers, most commonly near pentaploid, and double minute chromosomes were frequently found. This chromosomal instability associated with loss of a DNA polymerase activity in mammalian cells is similar to the instability associated with loss of homologous recombination capacity. Rev3L null MEFs were also moderately sensitive to mitomycin C, methyl methanesulfonate, and UV and gamma-radiation, indicating that mammalian pol zeta helps cells tolerate diverse types of DNA damage. The increased occurrence of chromosomal translocations in Rev3L-/- MEFs suggests that loss of Rev3L expression could contribute to genome instability during neoplastic transformation and progression.


Assuntos
Instabilidade Cromossômica/genética , Animais , Processos de Crescimento Celular/genética , DNA/efeitos dos fármacos , DNA/genética , Dano ao DNA , DNA Polimerase Dirigida por DNA/deficiência , DNA Polimerase Dirigida por DNA/genética , Embrião de Mamíferos , Fibroblastos/enzimologia , Inativação Gênica , Genes p53/genética , Camundongos , Translocação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...