Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Protein Sci ; 33(4): e4956, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38511511

RESUMO

Copper ion dys-homeostasis is linked to neurodegenerative diseases involving amyloid formation. Even if many amyloidogenic proteins can bind copper ions as monomers, little is known about copper interactions with the resulting amyloid fibers. Here, we investigate copper interactions with α-synuclein, the amyloid-forming protein in Parkinson's disease. Copper (Cu(II)) binds tightly to monomeric α-synuclein in vitro involving the N-terminal amine and the side chain of His50. Using purified protein and biophysical methods in vitro, we reveal that copper ions are readily incorporated into the formed amyloid fibers when present at the start of aggregation reactions, and the metal ions also bind if added to pre-formed amyloids. Efficient incorporation is observed for α-synuclein variants with perturbation of either one of the high-affinity monomer copper-binding residues (i.e., N-terminus or His50) whereas a variant with both N-terminal acetylation and His50 substituted with Ala does not incorporate any copper into the amyloids. Both the morphology of the resulting α-synuclein amyloids (amyloid fiber pitch, secondary structure, proteinase sensitivity) and the copper chemical properties (redox activity, chemical potential) are altered when copper is incorporated into amyloids. We speculate that copper chelation by α-synuclein amyloids contributes to the observed copper dys-homeostasis (e.g., reduced bioavailable levels) in Parkinson's disease patients. At the same time, amyloid-copper interactions may be protective to neuronal cells as they will shield aberrantly free copper ions from promotion of toxic reactive oxygen species.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/química , Doença de Parkinson/metabolismo , Cobre/química , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Íons
2.
Biochem Soc Trans ; 51(5): 1967-1974, 2023 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-37743793

RESUMO

Toxic aggregation of proteins and peptides into amyloid fibers is the basis of several human diseases. In each disease, a particular peptide noncovalently assembles into long thin structures with an overall cross-ß fold. Amyloids are not only related to disease: functional amyloids are found in many biological systems and artificial peptide amyloids are developed into novel nanomaterials. Amyloid fibers can act as template for the generation of more amyloids but are considered nonreactive in chemical catalysis. The perception of amyloids as chemically inert species was recently challenged by in vitro work on three human amyloid systems. With the use of model substrates, amyloid-ß, α-synuclein and glucagon amyloids were found to catalyze biologically relevant chemical reactions. The detected catalytic activity was much less than that of 'real' enzymes, but like that of designed (synthetic) catalytic amyloids. I here describe the current knowledge around this new activity of natural amyloids and the putative connection to metabolic changes in amyloid diseases. These pioneering studies imply that catalytic activity is an unexplored gain-of-function activity of disease amyloids. In fact, all biological amyloids may harbor intrinsic catalytic activity, tuned by each amyloid's particular fold, that await discovery.


Assuntos
Peptídeos beta-Amiloides , Amiloide , Humanos , Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Catálise
3.
Int J Mol Sci ; 24(16)2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37629028

RESUMO

The assembly of α-synuclein into cross-ß structured amyloid fibers results in Lewy body deposits and neuronal degeneration in Parkinson's disease patients. As the cell environment is highly crowded, interactions between the formed amyloid fibers and a range of biomolecules can occur in cells. Although amyloid fibers are considered chemically inert species, recent in vitro work using model substrates has shown α-synuclein amyloids, but not monomers, to catalyze the hydrolysis of ester and phosphoester bonds. To search for putative catalytic activity of α-synuclein amyloids on biologically relevant metabolites, we here incubated α-synuclein amyloids with neuronal SH-SY5Y cell lysates devoid of proteins. LC-MS-based metabolomic (principal component and univariate) analysis unraveled distinct changes in several metabolite levels upon amyloid (but not monomer) incubation. Of 63 metabolites identified, the amounts of four increased (3-hydroxycapric acid, 2-pyrocatechuic acid, adenosine, and NAD), and the amounts of seventeen decreased (including aromatic and apolar amino acids, metabolites in the TCA cycle, keto acids) in the presence of α-synuclein amyloids. Many of these metabolite changes match what has been reported previously in Parkinson's disease patients and animal-model metabolomics studies. Chemical reactivity of α-synuclein amyloids may be a new gain-of-function that alters the metabolite composition in cells and, thereby, modulates disease progression.


Assuntos
Neuroblastoma , Doença de Parkinson , Humanos , Animais , alfa-Sinucleína , Corpos de Inclusão , Proteínas Amiloidogênicas
4.
J Inorg Biochem ; 247: 112335, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37487298

RESUMO

The mediator of ERBB2-driven cell motility protein 1, Memo1, plays important roles in cancer signaling pathways. We recently reported Memo1 to coordinate reduced copper ions and protect them from reactive oxygen species (ROS) generation in vitro. We here assess if this Memo1 activity is at play in breast cancer cells. Copper additions to MDA-MB-231 cells promoted cell death, and this toxicity was exaggerated when Memo1 expression was reduced by silencing RNA. Using three different commercial ROS probes, we revealed that copper additions increased intracellular ROS levels, and these were further elevated when Memo1 expression was silenced. We propose that, in addition to other functions, Memo1 protects cancer cells from unwanted copper-mediated redox reactions. This may be a required safety mechanism in cancer cells as they have a high demand for copper.


Assuntos
Neoplasias da Mama , Cobre , Humanos , Feminino , Espécies Reativas de Oxigênio/metabolismo , Cobre/farmacologia , Cobre/metabolismo , Neoplasias da Mama/tratamento farmacológico , Oxirredução , Transdução de Sinais , Linhagem Celular Tumoral
5.
Biophys J ; 122(12): 2556-2563, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37170496

RESUMO

Addition of amyloid seeds to aggregation-prone monomers allows for amyloid fiber growth (elongation) omitting slow nucleation. We here combine Thioflavin T fluorescence (probing formation of amyloids) and solution-state NMR spectroscopy (probing disappearance of monomers) to assess elongation kinetics of the amyloidogenic protein, α-synuclein, for which aggregation is linked to Parkinson's disease. We found that both spectroscopic detection methods give similar kinetic results, which can be fitted by applying double exponential decay functions. When the origin of the two-phase behavior was analyzed by mathematical modeling, parallel paths as well as stop-and-go behavior were excluded as possible explanations. Instead, supported by previous theory, the experimental elongation data reveal distinct kinetic regimes that depend on instantaneous monomer concentration. At low monomer concentrations (toward end of experiments), amyloid growth is limited by conformational changes resulting in ß-strand alignments. At the higher monomer concentrations (initial time points of experiments), growth occurs rapidly by incorporating monomers that have not successfully completed the conformational search. The presence of a fast disordered elongation regime at high monomer concentrations agrees with coarse-grained simulations and theory but has not been detected experimentally before. Our results may be related to the wide range of amyloid folds observed.


Assuntos
Amiloide , alfa-Sinucleína , alfa-Sinucleína/química , Amiloide/química , Proteínas Amiloidogênicas , Conformação Molecular , Fluorescência , Cinética , Peptídeos beta-Amiloides
6.
ACS Chem Neurosci ; 14(4): 603-608, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36745416

RESUMO

Amyloid fibers of the protein α-synuclein, found in Lewy body deposits, are hallmarks of Parkinson's disease. We here show that α-synuclein amyloids catalyze biologically relevant chemical reactions in vitro. Amyloid fibers, but not monomers, of α-synuclein catalyzed hydrolysis of the model ester para-nitrophenyl acetate and dephosphorylation of the model phosphoester para-nitrophenyl-orthophosphate. When His50 was replaced with Ala in α-synuclein, dephosphorylation but not esterase activity of amyloids was diminished. Truncation of the protein's C-terminus had no effect on fiber catalytic efficiency. Catalytic activity of α-synuclein fibers may be a new gain-of-function that plays a role in Parkinson's disease.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Doença de Parkinson/metabolismo , Corpos de Lewy/metabolismo , Amiloide/metabolismo
7.
J Cell Biochem ; 124(3): 382-395, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36715685

RESUMO

Brown adipose tissue (BAT) consists of highly metabolically active adipocytes that catabolize nutrients to produce heat. Playing an active role in triacylglycerol (TAG) clearance, research has shown that dietary fatty acids can modulate the TAG chemistry deposition in BAT after weeks-long dietary intervention, similar to what has been shown in white adipose tissue (WAT). Our objective was to compare the influence of sustained, nonchronic dietary intervention (a 1-week interval) on WAT and interscapular BAT lipid metabolism and deposition in situ. We use quantitative, label-free chemical microscopy to show that 1 week of high fat diet (HFD) intervention results in dramatically larger lipid droplet (LD) growth in BAT (and liver) compared to LD growth in inguinal WAT (IWAT). Moreover, BAT showed lipid remodeling as increased unsaturated TAGs in LDs, resembling the dietary lipid composition, while WAT (and liver) did not show lipid remodeling on this time scale. Concurrently, expression of genes involved in lipid metabolism, particularly desaturases, was reduced in BAT and liver from HFD-fed mice after 1 week. Our data show that BAT lipid chemistry remodels exceptionally fast to dietary lipid intervention compared WAT, which further points towards a role in TAG clearance.


Assuntos
Tecido Adiposo Marrom , Dieta Hiperlipídica , Camundongos , Animais , Tecido Adiposo Marrom/metabolismo , Dieta Hiperlipídica/efeitos adversos , Microscopia , Tecido Adiposo Branco/metabolismo , Fígado/metabolismo , Gorduras na Dieta , Tecido Adiposo , Camundongos Endogâmicos C57BL
8.
Proc Natl Acad Sci U S A ; 119(37): e2206905119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067318

RESUMO

The protein mediator of ERBB2-driven cell motility 1 (Memo1) is connected to many signaling pathways that play key roles in cancer. Memo1 was recently postulated to bind copper (Cu) ions and thereby promote the generation of reactive oxygen species (ROS) in cancer cells. Since the concentration of Cu as well as ROS are increased in cancer cells, both can be toxic if not well regulated. Here, we investigated the Cu-binding capacity of Memo1 using an array of biophysical methods at reducing as well as oxidizing conditions in vitro. We find that Memo1 coordinates two reduced Cu (Cu(I)) ions per protein, and, by doing so, the metal ions are shielded from ROS generation. In support of biological relevance, we show that the cytoplasmic Cu chaperone Atox1, which delivers Cu(I) in the secretory pathway, can interact with and exchange Cu(I) with Memo1 in vitro and that the two proteins exhibit spatial proximity in breast cancer cells. Thus, Memo1 appears to act as a Cu(I) chelator (perhaps shuttling the metal ion to Atox1 and the secretory path) that protects cells from Cu-mediated toxicity, such as uncontrolled formation of ROS. This Memo1 functionality may be a safety mechanism to cope with the increased demand of Cu ions in cancer cells.


Assuntos
Proteínas de Transporte de Cobre , Cobre , Peptídeos e Proteínas de Sinalização Intracelular , Metalochaperonas , Chaperonas Moleculares , Linhagem Celular Tumoral , Cobre/metabolismo , Proteínas de Transporte de Cobre/genética , Proteínas de Transporte de Cobre/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Íons/metabolismo , Metalochaperonas/genética , Metalochaperonas/metabolismo , Modelos Moleculares , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Oxirredução , Ligação Proteica , Espécies Reativas de Oxigênio/metabolismo
9.
Essays Biochem ; 66(7): 977-986, 2022 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-35757906

RESUMO

Copper (Cu) ion dys-homeostasis and α-synclein amyloid deposits are two hallmarks of Parkinson's disease (PD). Here, I will discuss the connections between these features, with a major focus on the role of Cu in the α-synuclein (aS) amyloid formation process. The structurally disordered aS monomer can bind to both redox states of Cu (i.e., oxidized Cu(II) and reduced Cu(I)) with high affinity in vitro. Notably, the presence of Cu(II) (in absence of aS N-terminal acetylation) and Cu(I) (when in complex with the copper chaperone Atox1) modulate aS assembly into ß-structured amyloids in opposite directions in vitro. Albeit the link to biological relevance is not fully unraveled, existing observations clearly emphasize the need for more knowledge on this interplay and its consequences to eventually combat destructive reactions that promote PD.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/metabolismo , Cobre/metabolismo , Sítios de Ligação , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Íons/metabolismo , Proteínas de Transporte de Cobre/metabolismo , Chaperonas Moleculares/metabolismo
10.
J Am Chem Soc ; 144(9): 4178-4185, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35171591

RESUMO

Long-range electron tunneling through metalloproteins is facilitated by evolutionary tuning of donor-acceptor electronic couplings, formal electrochemical potentials, and active-site reorganization energies. Although the minimal frustration of the folding landscape enables this tuning, residual frustration in the vicinity of the metallocofactor can allow conformational fluctuations required for protein function. We show here that the constrained copper site in wild-type azurin is governed by an intricate pattern of minimally frustrated local and distant interactions that together enable rapid electron flow to and from the protein. In contrast, sluggish electron transfer reactions (unfavorable reorganization energies) of active-site azurin variants are attributable to increased frustration near to as well as distant from the copper site, along with an exaggerated oxidation-state dependence of both minimally and highly frustrated interaction patterns.


Assuntos
Azurina , Azurina/química , Cobre/química , Transporte de Elétrons , Elétrons , Pseudomonas aeruginosa/metabolismo
11.
Curr Opin Struct Biol ; 72: 33-38, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450484

RESUMO

Protein assembly into amyloid fibers underlies many neurodegenerative disorders. In Parkinson's disease, amyloid formation of α-synuclein is linked to brain cell death. The gut-brain axis plays a key role in Parkinson's disease, and initial α-synuclein amyloid formation may occur distant from the brain. Because different amyloidogenic proteins can cross-seed, and α-synuclein is expressed outside the brain, amyloids present in the gut (from food products and secreted by microbiota) may modulate α-synuclein amyloid formation via direct interactions. I here describe existing such data that only began to appear in the literature in the last few years. The striking, but limited, data set-spanning from acceleration to inhibition-calls for additional investigations that may unravel disease mechanisms as well as new treatments.


Assuntos
Trato Gastrointestinal , Doença de Parkinson , alfa-Sinucleína , Amiloide/metabolismo , Proteínas Amiloidogênicas/metabolismo , Trato Gastrointestinal/metabolismo , Humanos , Doença de Parkinson/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
12.
Biomedicines ; 9(12)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34944703

RESUMO

Copper plays a key role in cancer metastasis, which is the most common cause of cancer death. Copper depletion treatment with tetrathiomolybdate (TM) improved disease-free survival in breast cancer patients with high risk of recurrence in a phase II clinical trial. Because the copper metallochaperone ATOX1 was recently reported to drive breast cancer cell migration and breast cancer migration is a critical factor in metastasis, we tested if ATOX1 expression levels in primary tumor tissue could predict the TM treatment outcome of breast cancer patients at high risk of recurrence. We performed ATOX1 immunohistochemical staining of breast tumor material (before TM treatment) of 47 patients enrolled in the phase II TM clinical trial and evaluated ATOX1 expression levels in relation with patient outcome after TM treatment. Our results show that higher ATOX1 levels in the tumor cell cytoplasm correlate with a trend towards better event-free survival after TM treatment for triple-negative breast cancer patients and patients at stage III of disease. In conclusion, ATOX1 may be a potential predictive biomarker for TM treatment of breast cancer patients at high risk of recurrence and should be tested in a larger cohort of patients.

13.
Int J Mol Sci ; 22(21)2021 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-34768886

RESUMO

Exposure to heavy metals, including arsenic and cadmium, is associated with neurodegenerative disorders such as Parkinson's disease. However, the mechanistic details of how these metals contribute to pathogenesis are not well understood. To search for underlying mechanisms involving α-synuclein, the protein that forms amyloids in Parkinson's disease, we here assessed the effects of arsenic and cadmium on α-synuclein amyloid formation in vitro and in Saccharomyces cerevisiae (budding yeast) cells. Atomic force microscopy experiments with acetylated human α-synuclein demonstrated that amyloid fibers formed in the presence of the metals have a different fiber pitch compared to those formed without metals. Both metal ions become incorporated into the amyloid fibers, and cadmium also accelerated the nucleation step in the amyloid formation process, likely via binding to intermediate species. Fluorescence microscopy analyses of yeast cells expressing fluorescently tagged α-synuclein demonstrated that arsenic and cadmium affected the distribution of α-synuclein aggregates within the cells, reduced aggregate clearance, and aggravated α-synuclein toxicity. Taken together, our in vitro data demonstrate that interactions between these two metals and α-synuclein modulate the resulting amyloid fiber structures, which, in turn, might relate to the observed effects in the yeast cells. Whilst our study advances our understanding of how these metals affect α-synuclein biophysics, further in vitro characterization as well as human cell studies are desired to fully appreciate their role in the progression of Parkinson's disease.


Assuntos
Metais Pesados/toxicidade , Doenças Neurodegenerativas , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Arsenitos/toxicidade , Cádmio/toxicidade , Linhagem Celular/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/etiologia , Doença de Parkinson/metabolismo , Saccharomyces cerevisiae/metabolismo , alfa-Sinucleína/efeitos dos fármacos
14.
J Am Chem Soc ; 143(45): 18899-18906, 2021 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-34748321

RESUMO

The neuronal protein α-synuclein, linked to Parkinson's disease, binds to negatively charged vesicles adopting a partial α-helix structure, but helix arrangement at the vesicle surface is not fully understood. Using linear dichroism spectroscopy (LD), we study the interaction of monomeric α-synuclein with large unilamellar vesicles of 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS), and 1,2-dioleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DOPG) under mild shear flow. The LD data of oriented lipid vesicles show that the long axis of the protein helix is oriented preferentially perpendicular to the membrane normal but deviates from a uniform in-plane distribution. Upon initial binding, a fraction of helices are oriented in the direction of least curvature for all ellipsoid-shaped vesicles at a lipid:protein molar ratio of 100. However, at a lower protein concentration the helices distribute uniformly on DOPS and POPS vesicles. In all cases, the α-synuclein helices rearrange with time (minute time scale) in the shear flow and begin to tilt into the vesicle membrane. Faster reorientation kinetics in the presence of flow suggests that modulation of membrane dynamics, by thermal or shear-dynamic activation, may overcome steric barriers by what may be called "flow catalysis".


Assuntos
Lipossomas Unilamelares/metabolismo , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , Fosfatidilgliceróis/química , Fosfatidilserinas/química , Ligação Proteica , Conformação Proteica em alfa-Hélice , Lipossomas Unilamelares/química , alfa-Sinucleína/química
15.
J Biol Chem ; 297(6): 101314, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34715128

RESUMO

Normal physiology relies on the precise coordination of intracellular signaling pathways that respond to nutrient availability to balance cell growth and cell death. The canonical mitogen-activated protein kinase pathway consists of the RAF-MEK-ERK signaling cascade and represents one of the most well-defined axes within eukaryotic cells to promote cell proliferation, which underscores its frequent mutational activation in human cancers. Our recent studies illuminated a function for the redox-active micronutrient copper (Cu) as an intracellular mediator of signaling by connecting Cu to the amplitude of mitogen-activated protein kinase signaling via a direct interaction between Cu and the kinases MEK1 and MEK2. Given the large quantities of molecules such as glutathione and metallothionein that limit cellular toxicity from free Cu ions, evolutionarily conserved Cu chaperones facilitate efficient delivery of Cu to cuproenzymes. Thus, a dedicated cellular delivery mechanism of Cu to MEK1/2 likely exists. Using surface plasmon resonance and proximity-dependent biotin ligase studies, we report here that the Cu chaperone for superoxide dismutase (CCS) selectively bound to and facilitated Cu transfer to MEK1. Mutants of CCS that disrupt Cu(I) acquisition and exchange or a CCS small-molecule inhibitor were used and resulted in reduced Cu-stimulated MEK1 kinase activity. Our findings indicate that the Cu chaperone CCS provides fidelity within a complex biological system to achieve appropriate installation of Cu within the MEK1 kinase active site that in turn modulates kinase activity and supports the development of novel MEK1/2 inhibitors that target the Cu structural interface or blunt dedicated Cu delivery mechanisms via CCS.


Assuntos
Cobre/metabolismo , MAP Quinase Quinase 1/metabolismo , MAP Quinase Quinase 2/metabolismo , Chaperonas Moleculares/metabolismo , Linhagem Celular , Ativação Enzimática , Humanos , Ligação Proteica
16.
Biophys J ; 120(20): 4305-4306, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34499850

Assuntos
Cobre
17.
Sci Rep ; 11(1): 17682, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34480058

RESUMO

The concept of Molecular Crowding depicts the high density of diverse molecules present in the cellular interior. Here, we determine the impact of low molecular weight and larger molecules on binding capacity of single-stranded DNA (ssDNA) to the cold shock protein B (CspB). Whereas structural features of ssDNA-bound CspB are fully conserved in crowded environments as probed by high-resolution NMR spectroscopy, intrinsic fluorescence quenching experiments reveal subtle changes in equilibrium affinity. Kinetic stopped-flow data showed that DNA-to-protein association is significantly retarded independent of choice of the molecule that is added to the solution, but dissociation depends in a nontrivial way on its size and chemical characteristics. Thus, for this DNA-protein interaction, excluded volume effect does not play the dominant role but instead observed effects are dictated by the chemical properties of the crowder. We propose that surrounding molecules are capable of specific modification of the protein's hydration shell via soft interactions that, in turn, tune protein-ligand binding dynamics and affinity.


Assuntos
Proteínas e Peptídeos de Choque Frio/metabolismo , DNA de Cadeia Simples/metabolismo , Modelos Moleculares , Espectroscopia de Ressonância Magnética , Ligação Proteica
18.
Biophys J ; 120(16): 3374-3381, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-34242594

RESUMO

The crowdedness of living cells, hundreds of milligrams per milliliter of macromolecules, may affect protein folding, function, and misfolding. Still, such processes are most often studied in dilute solutions in vitro. To assess consequences of the in vivo milieu, we here investigated the effects of macromolecular crowding on the amyloid fiber formation reaction of α-synuclein, the amyloidogenic protein in Parkinson's disease. For this, we performed spectroscopic experiments probing individual steps of the reaction as a function of the macromolecular crowding agent Ficoll70, which is an inert sucrose-based polymer that provides excluded-volume effects. The experiments were performed at neutral pH at quiescent conditions to avoid artifacts due to shaking and glass beads (typical conditions for α-synuclein), using amyloid fiber seeds to initiate reactions. We find that both primary nucleation and fiber elongation steps during α-synuclein amyloid formation are accelerated by the presence of 140 and 280 mg/mL Ficoll70. Moreover, in the presence of Ficoll70 at neutral pH, secondary nucleation appears favored, resulting in faster overall α-synuclein amyloid formation. In contrast, sucrose, a small-molecule osmolyte and building block of Ficoll70, slowed down α-synuclein amyloid formation. The ability of cell environments to modulate reaction kinetics to a large extent, such as severalfold faster individual steps in α-synuclein amyloid formation, is an important consideration for biochemical reactions in living systems.


Assuntos
Doença de Parkinson , alfa-Sinucleína , Amiloide , Humanos , Cinética , Dobramento de Proteína
19.
Biochem Biophys Res Commun ; 568: 43-47, 2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34175689

RESUMO

Parkinson's disease (PD) is linked to aggregation of the protein α-synuclein (aS) into amyloid fibers. aS is proposed to regulate synaptic activity and may also play a role in gene regulation via interaction with DNA in the cell nucleus. Here, we address the role of the negatively-charged C-terminus in the interaction between aS and DNA using single-molecule techniques. Using nanofluidic channels, we demonstrate that truncation of the C-terminus of aS induces differential effects on DNA depending on the extent of the truncation. The DNA extension increases for full-length aS and the (1-119)aS variant, but decreases about 25% upon binding to the (1-97)aS variant. Atomic force microscopy imaging showed full protein coverage of the DNA at high aS concentration. The characterization of biophysical properties of DNA when in complex with aS variants may provide important insights into the role of such interactions in PD, especially since C-terminal aS truncations have been found in clinical samples from PD patients.


Assuntos
DNA/metabolismo , alfa-Sinucleína/metabolismo , Sequência de Aminoácidos , DNA/química , Humanos , Conformação de Ácido Nucleico , Doença de Parkinson/metabolismo , Agregação Patológica de Proteínas/metabolismo , Domínios Proteicos , alfa-Sinucleína/química
20.
Biomedicines ; 9(4)2021 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-33917579

RESUMO

Copper is vital for numerous cellular functions affecting all tissues and organ systems in the body. The copper pump, ATP7A is critical for whole-body, cellular, and subcellular copper homeostasis, and dysfunction due to genetic defects results in Menkes disease. ATP7A dysfunction leads to copper deficiency in nervous tissue, liver, and blood but accumulation in other tissues. Site-specific cellular deficiencies of copper lead to loss of function of copper-dependent enzymes in all tissues, and the range of Menkes disease pathologies observed can now be explained in full by lack of specific copper enzymes. New pathways involving copper activated lysosomal and steroid sulfatases link patient symptoms usually related to other inborn errors of metabolism to Menkes disease. Additionally, new roles for lysyl oxidase in activation of molecules necessary for the innate immune system, and novel adapter molecules that play roles in ERGIC trafficking of brain receptors and other proteins, are emerging. We here summarize the current knowledge of the roles of copper enzyme function in Menkes disease, with a focus on ATP7A-mediated enzyme metalation in the secretory pathway. By establishing mechanistic relationships between copper-dependent cellular processes and Menkes disease symptoms in patients will not only increase understanding of copper biology but will also allow for the identification of an expanding range of copper-dependent enzymes and pathways. This will raise awareness of rare patient symptoms, and thus aid in early diagnosis of Menkes disease patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...