Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cell Rep ; 41(1): 111447, 2022 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-36198277

RESUMO

Respiratory tract infections are among the deadliest communicable diseases worldwide. Severe cases of viral lung infections are often associated with a cytokine storm and alternating platelet numbers. We report that hematopoietic stem and progenitor cells (HSPCs) sense a non-systemic influenza A virus (IAV) infection via inflammatory cytokines. Irrespective of antiviral treatment or vaccination, at a certain threshold of IAV titer in the lung, CD41-positive hematopoietic stem cells (HSCs) enter the cell cycle while endothelial protein C receptor-positive CD41-negative HSCs remain quiescent. Active CD41-positive HSCs represent the source of megakaryocytes, while their multi-lineage reconstitution potential is reduced. This emergency megakaryopoiesis is thrombopoietin independent and attenuated in IAV-infected interleukin-1 receptor-deficient mice. Newly produced platelets during IAV infection are immature and hyper-reactive. After viral clearance, HSC quiescence is re-established. Our study reveals that non-systemic viral respiratory infection has an acute impact on HSCs via inflammatory cytokines to counteract IAV-induced thrombocytopenia.


Assuntos
Vírus da Influenza A , Influenza Humana , Animais , Antivirais/metabolismo , Citocinas/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Hematopoese , Humanos , Influenza Humana/metabolismo , Megacariócitos/metabolismo , Camundongos , Receptores de Interleucina-1/metabolismo , Trombopoetina/metabolismo
2.
Biomacromolecules ; 23(9): 3593-3601, 2022 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-35904477

RESUMO

Influenza A viruses (IAV), including the pandemic 2009 (pdm09) H1N1 or avian influenza H5N1 virus, may advance into more pathogenic, potentially antiviral drug-resistant strains (including loss of susceptibility against oseltamivir). Such IAV strains fuel the risk of future global outbreaks, to which this study responds by re-engineering Interferon-α2a (IFN-α2a) bioconjugates into influenza therapeutics. Type-I interferons such as IFN-α2a play an essential role in influenza infection and may prevent serious disease courses. We site-specifically conjugated a genetically engineered IFN-α2a mutant to poly(2-ethyl-2-oxazoline)s (PEtOx) of different molecular weights by strain-promoted azide-alkyne cyclo-addition. The promising pharmacokinetic profile of the 25 kDa PEtOx bioconjugate in mice echoed an efficacy in IAV-infected ferrets. One intraperitoneal administration of this bioconjugate, but not the marketed IFN-α2a bioconjugate, changed the disease course similar to oseltamivir, given orally twice every study day. PEtOxylated IFN-α2a bioconjugates may expand our therapeutic arsenal against future influenza pandemics, particularly in light of rising first-line antiviral drug resistance to IAV.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Virus da Influenza A Subtipo H5N1 , Vírus da Influenza A , Influenza Humana , Animais , Antivirais/farmacologia , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Virus da Influenza A Subtipo H5N1/genética , Influenza Humana/tratamento farmacológico , Camundongos , Oseltamivir/farmacologia , Oseltamivir/uso terapêutico
3.
J Control Release ; 348: 881-892, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35764249

RESUMO

Conjugation of poly(ethylene glycol) (PEG) to biologics is a successful strategy to favorably impact the pharmacokinetics and efficacy of the resulting bioconjugate. We compare bioconjugates synthesized by strain-promoted azide-alkyne cycloaddition (SPAAC) using PEG and linear polyglycerol (LPG) of about 20 kDa or 40 kDa, respectively, with an azido functionalized human Interferon-α2a (IFN-α2a) mutant. Site-specific PEGylation and LPGylation resulted in IFN-α2a bioconjugates with improved in vitro potency compared to commercial Pegasys. LPGylated bioconjugates had faster disposition kinetics despite comparable hydrodynamic radii to their PEGylated analogues. Overall exposure of the PEGylated IFN-α2a with a 40 kDa polymer exceeded Pegasys, which, in return, was similar to the 40 kDa LPGylated conjugates. The study points to an expanded polymer design space through which the selected polymer class may result in a different distribution of the studied bioconjugates.


Assuntos
Polietilenoglicóis , Polímeros , Humanos , Interferon alfa-2 , Cinética , Polietilenoglicóis/farmacocinética , Proteínas Recombinantes
4.
Nat Commun ; 12(1): 5233, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34475387

RESUMO

Measles virus (MeV) is a highly contagious pathogen that enters the human host via the respiratory route. Besides acute pathologies including fever, cough and the characteristic measles rash, the infection of lymphocytes leads to substantial immunosuppression that can exacerbate the outcome of infections with additional pathogens. Despite the availability of effective vaccine prophylaxis, measles outbreaks continue to occur worldwide. We demonstrate that prophylactic and post-exposure therapeutic treatment with an orally bioavailable small-molecule polymerase inhibitor, ERDRP-0519, prevents measles disease in squirrel monkeys (Saimiri sciureus). Treatment initiation at the onset of clinical signs reduced virus shedding, which may support outbreak control. Results show that this clinical candidate has the potential to alleviate clinical measles and augment measles virus eradication.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Sarampo/prevenção & controle , Morfolinas/uso terapêutico , Piperidinas/uso terapêutico , Pirazóis/uso terapêutico , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Animais , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacocinética , Tolerância Imunológica/efeitos dos fármacos , Imunidade Humoral/efeitos dos fármacos , Vírus do Sarampo/efeitos dos fármacos , Morfolinas/farmacocinética , Piperidinas/farmacocinética , Pirazóis/farmacocinética , Saimiri , Replicação Viral/efeitos dos fármacos , Eliminação de Partículas Virais/efeitos dos fármacos
5.
PLoS Pathog ; 17(4): e1009064, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33882114

RESUMO

Vaccines of outstanding efficiency, safety, and public acceptance are needed to halt the current SARS-CoV-2 pandemic. Concerns include potential side effects caused by the antigen itself and safety of viral DNA and RNA delivery vectors. The large SARS-CoV-2 spike (S) protein is the main target of current COVID-19 vaccine candidates but can induce non-neutralizing antibodies, which might cause vaccination-induced complications or enhancement of COVID-19 disease. Besides, encoding of a functional S in replication-competent virus vector vaccines may result in the emergence of viruses with altered or expanded tropism. Here, we have developed a safe single round rhabdovirus replicon vaccine platform for enhanced presentation of the S receptor-binding domain (RBD). Structure-guided design was employed to build a chimeric minispike comprising the globular RBD linked to a transmembrane stem-anchor sequence derived from rabies virus (RABV) glycoprotein (G). Vesicular stomatitis virus (VSV) and RABV replicons encoding the minispike not only allowed expression of the antigen at the cell surface but also incorporation into the envelope of secreted non-infectious particles, thus combining classic vector-driven antigen expression and particulate virus-like particle (VLP) presentation. A single dose of a prototype replicon vaccine complemented with VSV G, VSVΔG-minispike-eGFP (G), stimulated high titers of SARS-CoV-2 neutralizing antibodies in mice, equivalent to those found in COVID-19 patients, and protected transgenic K18-hACE2 mice from COVID-19-like disease. Homologous boost immunization further enhanced virus neutralizing activity. The results demonstrate that non-spreading rhabdovirus RNA replicons expressing minispike proteins represent effective and safe alternatives to vaccination approaches using replication-competent viruses and/or the entire S antigen.


Assuntos
Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Imunização/métodos , SARS-CoV-2/imunologia , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , COVID-19/virologia , Feminino , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL
6.
Emerg Microbes Infect ; 8(1): 787-795, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31132935

RESUMO

Pteropine orthoreoviruses (PRV) are emerging bat-borne viruses with proven zoonotic transmission. We recently demonstrated human exposure to PRV in Singapore, which together with previous reports from Malaysia and Vietnam suggest that human infection of PRV may occur periodically in the region. This raises the question whether bats are the only sources of human infection. In this study, we screened 517 cynomolgus macaques caught in Singapore for evidence of exposure to PRV3M (also known as Melaka virus), which was first isolated from human patients in Melaka, Malaysia. We found that 67 serum samples were PRV3M positive by ELISA and 34 were also positive by virus neutralization assay. To investigate whether monkeys could act as hosts for PRV transmission, we experimentally infected cynomolgus macaques with PRV3M and housed these animals with uninfected monkeys. Although no clinical signs of infection were observed in infected animals, viral RNA was detected in nasal and rectal swabs and all infected macaques seroconverted. Additionally, one of the uninfected animals seroconverted, implying active shedding and transmission of PRV3M. We provide evidence that PRV exposure in the macaque population in Singapore occurs at a relatively high prevalence and this study suggests that cynomolgus macaques may be an intermediate or reservoir host for PRVs.


Assuntos
Macaca fascicularis/virologia , Doenças dos Macacos/virologia , Orthoreovirus/fisiologia , Infecções por Reoviridae/transmissão , Infecções por Reoviridae/veterinária , Zoonoses/transmissão , Animais , Anticorpos Antivirais/sangue , Anticorpos Antivirais/imunologia , Feminino , Humanos , Macaca fascicularis/sangue , Doenças dos Macacos/sangue , Doenças dos Macacos/transmissão , Testes de Neutralização , Orthoreovirus/genética , Infecções por Reoviridae/sangue , Infecções por Reoviridae/virologia , Singapura , Zoonoses/sangue , Zoonoses/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...