Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7152, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37932269

RESUMO

The outer membrane (OM) in diderm, or Gram-negative, bacteria must be tethered to peptidoglycan for mechanical stability and to maintain cell morphology. Most diderm phyla from the Terrabacteria group have recently been shown to lack well-characterised OM attachment systems, but instead have OmpM, which could represent an ancestral tethering system in bacteria. Here, we have determined the structure of the most abundant OmpM protein from Veillonella parvula (diderm Firmicutes) by single particle cryogenic electron microscopy. We also characterised the channel properties of the transmembrane ß-barrel of OmpM and investigated the structure and PG-binding properties of its periplasmic stalk region. Our results show that OM tethering and nutrient acquisition are genetically linked in V. parvula, and probably other diderm Terrabacteria. This dual function of OmpM may have played a role in the loss of the OM in ancestral bacteria and the emergence of monoderm bacterial lineages.


Assuntos
Parede Celular , Firmicutes , Membrana Celular/metabolismo , Parede Celular/metabolismo , Bactérias/metabolismo , Bactérias Gram-Negativas/metabolismo , Nutrientes , Proteínas da Membrana Bacteriana Externa/metabolismo
2.
Nat Microbiol ; 7(3): 411-422, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35246664

RESUMO

Recent data support the hypothesis that Gram-positive bacteria (monoderms) arose from Gram-negative ones (diderms) through loss of the outer membrane (OM), but how this happened remains unknown. As tethering of the OM is essential for cell envelope stability in diderm bacteria, its destabilization may have been involved in this transition. In the present study, we present an in-depth analysis of the four known main OM-tethering systems across the Tree of Bacteria (ToB). We show that the presence of such systems follows the ToB with a bimodal distribution matching the deepest phylogenetic divergence between Terrabacteria and Gracilicutes. Whereas the lipoprotein peptidoglycan-associated lipoprotein (Pal) is restricted to the Gracilicutes, along with a more sporadic occurrence of OmpA, and Braun's lipoprotein is present only in a subclade of Gammaproteobacteria, diderm Terrabacteria display, as the main system, the OmpM protein. We propose an evolutionary scenario whereby OmpM represents a simple, ancestral OM-tethering system that was later replaced by one based on Pal after the emergence of the Lol machinery to deliver lipoproteins to the OM, with OmpA as a possible transition state. We speculate that the existence of only one main OM-tethering system in the Terrabacteria would have allowed the multiple OM losses specifically inferred in this clade through OmpM perturbation, and we provide experimental support for this hypothesis by inactivating all four ompM gene copies in the genetically tractable diderm Firmicute Veillonella parvula. High-resolution imaging and tomogram reconstructions reveal a non-lethal phenotype in which vast portions of the OM detach from the cells, forming huge vesicles with an inflated periplasm shared by multiple dividing cells. Together, our results highlight an ancient shift of OM-tethering systems in bacterial evolution and suggest a mechanism for OM loss and the multiple emergences of the monoderm phenotype from diderm ancestors.


Assuntos
Bactérias , Bactérias Gram-Positivas , Bactérias/genética , Bactérias Gram-Positivas/metabolismo , Lipoproteínas/genética , Lipoproteínas/metabolismo , Peptidoglicano/metabolismo , Periplasma/metabolismo , Filogenia
3.
Nat Ecol Evol ; 4(12): 1661-1672, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33077930

RESUMO

The transition between cell envelopes with one membrane (Gram-positive or monoderm) and those with two membranes (Gram-negative or diderm) is a fundamental open question in the evolution of Bacteria. Evidence of the presence of two independent diderm lineages, the Halanaerobiales and the Negativicutes, within the classically monoderm Firmicutes has blurred the monoderm/diderm divide and specifically anticipated that other members with an outer membrane (OM) might exist in this phylum. Here, by screening 1,639 genomes of uncultured Firmicutes for signatures of an OM, we highlight a third and deep branching diderm clade, the Limnochordia, strengthening the hypothesis of a diderm ancestor and the occurrence of independent transitions leading to the monoderm phenotype. Phyletic patterns of over 176,000 protein families constituting the Firmicutes pan-proteome identify those that strongly correlate with the diderm phenotype and suggest the existence of new potential players in OM biogenesis. In contrast, we find practically no largely conserved core of monoderms, a fact possibly linked to different ways of adapting to repeated OM losses. Phylogenetic analysis of a concatenation of main OM components totalling nearly 2,000 amino acid positions illustrates the common origin and vertical evolution of most diderm bacterial envelopes. Finally, mapping the presence/absence of OM markers onto the tree of Bacteria shows the overwhelming presence of diderm phyla and the non-monophyly of monoderm ones, pointing to an early origin of two-membraned cells and the derived nature of the Gram-positive envelope following multiple OM losses.


Assuntos
Firmicutes , Bactérias Gram-Positivas , Bactérias , Bactérias Gram-Negativas , Humanos , Filogenia
4.
J Bacteriol ; 202(21)2020 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-32817093

RESUMO

The Negativicutes are a clade of the Firmicutes that have retained the ancestral diderm character and possess an outer membrane. One of the best studied Negativicutes, Veillonella parvula, is an anaerobic commensal and opportunistic pathogen inhabiting complex human microbial communities, including the gut and the dental plaque microbiota. Whereas the adhesion and biofilm capacities of V. parvula are expected to be crucial for its maintenance and development in these environments, studies of V. parvula adhesion have been hindered by the lack of efficient genetic tools to perform functional analyses in this bacterium. Here, we took advantage of a recently described naturally transformable V. parvula isolate, SKV38, and adapted tools developed for the closely related Clostridia spp. to perform random transposon and targeted mutagenesis to identify V. parvula genes involved in biofilm formation. We show that type V secreted autotransporters, typically found in diderm bacteria, are the main determinants of V. parvula autoaggregation and biofilm formation and compete with each other for binding either to cells or to surfaces, with strong consequences for V. parvula biofilm formation capacity. The identified trimeric autotransporters have an original structure compared to classical autotransporters identified in Proteobacteria, with an additional C-terminal domain. We also show that inactivation of the gene coding for a poorly characterized metal-dependent phosphohydrolase HD domain protein conserved in the Firmicutes and their closely related diderm phyla inhibits autotransporter-mediated biofilm formation. This study paves the way for further molecular characterization of V. parvula interactions with other bacteria and the host within complex microbiota environments.IMPORTANCEVeillonella parvula is an anaerobic commensal and opportunistic pathogen whose ability to adhere to surfaces or other bacteria and form biofilms is critical for it to inhabit complex human microbial communities such as the gut and oral microbiota. Although the adhesive capacity of V. parvula has been previously described, very little is known about the underlying molecular mechanisms due to a lack of genetically amenable Veillonella strains. In this study, we took advantage of a naturally transformable V. parvula isolate and newly adapted genetic tools to identify surface-exposed adhesins called autotransporters as the main molecular determinants of adhesion in this bacterium. This work therefore provides new insights on an important aspect of the V. parvula lifestyle, opening new possibilities for mechanistic studies of the contribution of biofilm formation to the biology of this major commensal of the oral-digestive tract.


Assuntos
Adesinas Bacterianas , Aderência Bacteriana/genética , Biofilmes/crescimento & desenvolvimento , Sistemas de Secreção Tipo V , Veillonella/fisiologia , Adesinas Bacterianas/genética , Adesinas Bacterianas/metabolismo , Sistemas de Secreção Tipo V/genética , Sistemas de Secreção Tipo V/metabolismo
5.
Mol Microbiol ; 113(3): 659-671, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31975449

RESUMO

How, when and why the transition between cell envelopes with one membrane (Gram-positives or monoderms) and two (Gram-negative or diderms) occurred in Bacteria is a key unanswered question in evolutionary biology. Different hypotheses have been put forward, suggesting that either the monoderm or the diderm phenotype is ancestral. The existence of diderm members in the classically monoderm Firmicutes challenges the Gram-positive/Gram-negative divide and provides a great opportunity to tackle the issue. In this review, we present current knowledge on the diversity of bacterial cell envelopes, including these atypical Firmicutes. We discuss how phylogenomic analysis supports the hypothesis that the diderm cell envelope architecture is an ancestral character in the Firmicutes, and that the monoderm phenotype in this phylum arose multiple times independently by loss of the outer membrane. Given the overwhelming distribution of diderm phenotypes with respect to monoderm ones, this scenario likely extends to the ancestor of all bacteria. Finally, we discuss the recent development of genetic tools for Veillonella parvula, a diderm Firmicute member of the human microbiome, which indicates it as an emerging new experimental model to investigate fundamental aspects of the diderm/monoderm transition.


Assuntos
Membrana Celular/genética , Bactérias Gram-Negativas/ultraestrutura , Bactérias Gram-Positivas/ultraestrutura , Bactérias/genética , Bactérias/metabolismo , Evolução Biológica , Membrana Celular/ultraestrutura , Parede Celular/genética , Parede Celular/ultraestrutura , Evolução Molecular , Firmicutes/classificação , Firmicutes/genética , Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/genética , Bactérias Gram-Positivas/metabolismo , Lipopolissacarídeos , Filogenia
6.
Sci Rep ; 9(1): 20226, 2019 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-31882990

RESUMO

The 2,5-Diketopiperazines (DKPs) constitute a large family of natural products with important biological activities. Bicyclomycin is a clinically-relevant DKP antibiotic that is the first and only member in a class known to target the bacterial transcription termination factor Rho. It derives from cyclo-(L-isoleucyl-L-leucyl) and has an unusual and highly oxidized bicyclic structure that is formed by an ether bridge between the hydroxylated terminal carbon atom of the isoleucine lateral chain and the alpha carbon of the leucine in the diketopiperazine ring. Here, we paired in vivo and in vitro studies to complete the characterization of the bicyclomycin biosynthetic gene cluster. The construction of in-frame deletion mutants in the biosynthetic gene cluster allowed for the accumulation and identification of biosynthetic intermediates. The identity of the intermediates, which were reproduced in vitro using purified enzymes, allowed us to characterize the pathway and corroborate previous reports. Finally, we show that the putative antibiotic transporter was dispensable for the producing strain.


Assuntos
Antibacterianos/biossíntese , Vias Biossintéticas/genética , Genes Bacterianos/genética , Família Multigênica , Streptomyces/genética , Antibacterianos/química , Compostos Bicíclicos Heterocíclicos com Pontes/química , Compostos Bicíclicos Heterocíclicos com Pontes/metabolismo , Dicetopiperazinas/química , Hidroxilação , Modelos Químicos , Estrutura Molecular , Mutação , Streptomyces/metabolismo
7.
Nat Chem Biol ; 11(9): 721-7, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26236937

RESUMO

Cyclodipeptide synthases (CDPSs) constitute a family of peptide bond-forming enzymes that use aminoacyl-tRNAs for the synthesis of cyclodipeptides. Here, we describe the activity of 41 new CDPSs. We also show that CDPSs can be classified into two main phylogenetically distinct subfamilies characterized by specific functional subsequence signatures, named NYH and XYP. All 11 previously characterized CDPSs belong to the NYH subfamily, suggesting that further special features may be yet to be discovered in the other subfamily. CDPSs synthesize a large diversity of cyclodipeptides made up of 17 proteinogenic amino acids. The identification of several CDPSs having the same specificity led us to determine specificity sequence motifs that, in combination with the phylogenetic distribution of CDPSs, provide a first step toward being able to predict the cyclodipeptides synthesized by newly discovered CDPSs. The determination of the activity of ten more CDPSs with predicted functions constitutes a first experimental validation of this predictive approach.


Assuntos
Proteínas de Bactérias/química , Dipeptídeos/química , Proteínas Fúngicas/química , Peptídeo Sintases/química , Peptídeos Cíclicos/química , Motivos de Aminoácidos , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/classificação , Proteínas de Bactérias/genética , Biologia Computacional , Ciclização , Bases de Dados Genéticas , Dipeptídeos/biossíntese , Dipeptídeos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Fúngicas/biossíntese , Proteínas Fúngicas/classificação , Proteínas Fúngicas/genética , Expressão Gênica , Dados de Sequência Molecular , Biossíntese de Peptídeos Independentes de Ácido Nucleico , Peptídeo Sintases/biossíntese , Peptídeo Sintases/genética , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/genética , Filogenia , Estrutura Terciária de Proteína , Aminoacil-RNA de Transferência/química , Aminoacil-RNA de Transferência/genética , Aminoacil-RNA de Transferência/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...