Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(3)2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38591590

RESUMO

Fatigue life testing is a complex and costly matter, especially in the case of fibre-reinforced thermoplastics, where other parameters in addition to force alone must be taken into account. The number of tests required therefore increases significantly, especially if the influence of different fibre orientations is to be taken into account. It is therefore important to gain the greatest possible amount of knowledge from the limited number of available tests. In order to achieve this, this study aims to utilise adaptive sampling, which is used in numerous areas of computational engineering, for the design of experiments on fatigue life testing. Artificial neural networks (ANNs) are therefore trained on data for the short-fibre-reinforced material PBT GF30, and their areas of greatest model uncertainty are queried. This was undertaken with ANNs from various numbers of hidden layers, which were analysed for their performance. The ideal case turned out to be four hidden layers, for which a squared error as small as 1 × 10-3 was recorded. Locally resolved, the ANN was used to identify the region of greatest uncertainty for samples of vertical orientation and small numbers of cycles. With information such as this, additional data can be obtained in such uncertain regions in order to improve the model prediction-almost halving the recorded error to only 0.55 × 10-3. In this way, a model of comparable value can be found with less experimental effort, or a model of better quality can be set up with the same experimental effort.

2.
Materials (Basel) ; 16(18)2023 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-37763452

RESUMO

It is undeniable that mechanical properties, such as the stiffness or residual strength of fibre-reinforced thermoplastics, are adversely affected by fatigue damage caused by cyclic loading. In order to quantify and predict this damage influence, a calculation approach was developed in the past for the subgroup of short-fibre-reinforced thermoplastics. In order to test and expand the applicability of this approach to the field of long-fibre-reinforced thermoplastics, the decrease in mechanical properties is investigated experimentally in this paper using PP LGF30, propylene reinforced with long glass fibres, as an example. The paper describes both the fatigue behaviour and the residual strength of the material after fatigue damage. A decrease in the residual strength of up to about 35% could be recorded. The paper also presents a modelling approach that predicts the orientation-dependent fatigue strength of the material, and furthermore allows for the calculation of its residual strength as a function of fatigue damage. The novelty of the contribution lies in the continuous modelling of fatigue behaviour for arbitrary oriented samples of long-fibre-reinforced thermoplastics and also in the prediction of its residual strength depending on previously induced fatigue damage.

3.
Materials (Basel) ; 16(9)2023 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-37176385

RESUMO

The individualization of patient-specific ankle joint orthoses is becoming increasingly important and can be ideally realized by means of additive manufacturing. However, currently, there are no functional additively manufactured fiber-reinforced products that are used in the field of orthopedic treatment. In this paper, an approach as to how additively manufactured orthopedic products can be designed and produced quickly and flexibly in the future is presented. This is demonstrated using the example of a solid ankle-foot orthosis. For this purpose, test results on PETG-CF15, which were determined in a previous work, were integrated into a material map for an FEA simulation. Therewith, the question can be answered as to whether production parameters that were determined at the test specimen level can also be adapted to real, usable components. Furthermore, gait recordings were used as loading conditions to obtain exact results for the final product. In order to perfectly adapt the design of the splint to the user, a 3D scan of a foot was performed to obtain a perfect design space for topology optimization. This resulted in a patient-specific and stiffness-optimized product. Subsequently, it was demonstrated that the orthosis could be manufactured using fused layer modelling. Finally, a comparison between the conventional design and the consideration of AM-specific properties was made. On this basis, it can be stated that the wearing comfort of the patient-specific design is very good, but the tightening of the splint still needs to be improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...