Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Chem ; 64(21): 15949-15972, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34705450

RESUMO

The NRF2-mediated cytoprotective response is central to cellular homoeostasis, and there is increasing interest in developing small-molecule activators of this pathway as therapeutics for diseases involving chronic oxidative stress. The protein KEAP1, which regulates NRF2, is a key point for pharmacological intervention, and we recently described the use of fragment-based drug discovery to develop a tool compound that directly disrupts the protein-protein interaction between NRF2 and KEAP1. We now present the identification of a second, chemically distinct series of KEAP1 inhibitors, which provided an alternative chemotype for lead optimization. Pharmacophoric information from our original fragment screen was used to identify new hit matter through database searching and to evolve this into a new lead with high target affinity and cell-based activity. We highlight how knowledge obtained from fragment-based approaches can be used to focus additional screening campaigns in order to de-risk projects through the rapid identification of novel chemical series.


Assuntos
Ácidos Carboxílicos/farmacologia , Descoberta de Drogas , Proteína 1 Associada a ECH Semelhante a Kelch/antagonistas & inibidores , Animais , Ácidos Carboxílicos/química , Linhagem Celular , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Camundongos , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/metabolismo , Ligação Proteica , Pirazóis , Relação Estrutura-Atividade
2.
J Pharmacol Exp Ther ; 363(1): 114-125, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28790194

RESUMO

Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) is a key regulator of oxidative stress and cellular repair and can be activated through inhibition of its cytoplasmic repressor, Kelch-like ECH-associated protein 1 (Keap1). Several small molecule disrupters of the Nrf2-Keap1 complex have recently been tested and/or approved for human therapeutic use but lack either potency or selectivity. The main goal of our work was to develop a potent, selective activator of NRF2 as protection against oxidative stress. In human bronchial epithelial cells, our Nrf2 activator, 3-(pyridin-3-ylsulfonyl)-5-(trifluoromethyl)-2H-chromen-2-one (PSTC), induced Nrf2 nuclear translocation, Nrf2-regulated gene expression, and downstream signaling events, including induction of NAD(P)H:quinone oxidoreductase 1 (NQO1) enzyme activity and heme oxygenase-1 protein expression, in an Nrf2-dependent manner. As a marker of subsequent functional activity, PSTC restored oxidant (tert-butyl hydroperoxide)-induced glutathione depletion. The compound's engagement of the Nrf2 signaling pathway translated to an in vivo setting, with induction of Nrf2-regulated gene expression and NQO1 enzyme activity, as well as restoration of oxidant (ozone)-induced glutathione depletion, occurring in the lungs of PSTC-treated rodents. Under disease conditions, PSTC engaged its target, inducing the expression of Nrf2-regulated genes in human bronchial epithelial cells derived from patients with chronic obstructive pulmonary disease, as well as in the lungs of cigarette smoke-exposed mice. Subsequent to the latter, a dose-dependent inhibition of cigarette smoke-induced pulmonary inflammation was observed. Finally, in contrast with bardoxolone methyl and sulforaphane, PSTC did not inhibit interleukin-1ß-induced nuclear factor-κB translocation or insulin-induced S6 phosphorylation in human cells, emphasizing the on-target activity of this compound. In summary, we characterize a potent, selective Nrf2 activator that offers protection against pulmonary oxidative stress in several cellular and in vivo models.


Assuntos
Cumarínicos/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/agonistas , Estresse Oxidativo/efeitos dos fármacos , Pneumonia/prevenção & controle , Doença Pulmonar Obstrutiva Crônica/metabolismo , Sulfonas/uso terapêutico , Animais , Western Blotting , Linhagem Celular , Núcleo Celular/metabolismo , Cumarínicos/administração & dosagem , Cumarínicos/sangue , Modelos Animais de Doenças , Descoberta de Drogas , Células Epiteliais/metabolismo , Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Células HEK293 , Humanos , Pulmão/metabolismo , Camundongos Endogâmicos C57BL , NAD(P)H Desidrogenase (Quinona)/genética , Fator 2 Relacionado a NF-E2/genética , Ozônio/toxicidade , Pneumonia/etiologia , Pneumonia/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , Ratos Wistar , Fumar/efeitos adversos , Sulfonas/administração & dosagem , Sulfonas/sangue , Transfecção
3.
J Med Chem ; 59(8): 3991-4006, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-27031670

RESUMO

KEAP1 is the key regulator of the NRF2-mediated cytoprotective response, and increasingly recognized as a target for diseases involving oxidative stress. Pharmacological intervention has focused on molecules that decrease NRF2-ubiquitination through covalent modification of KEAP1 cysteine residues, but such electrophilic compounds lack selectivity and may be associated with off-target toxicity. We report here the first use of a fragment-based approach to directly target the KEAP1 Kelch-NRF2 interaction. X-ray crystallographic screening identified three distinct "hot-spots" for fragment binding within the NRF2 binding pocket of KEAP1, allowing progression of a weak fragment hit to molecules with nanomolar affinity for KEAP1 while maintaining drug-like properties. This work resulted in a promising lead compound which exhibits tight and selective binding to KEAP1, and activates the NRF2 antioxidant response in cellular and in vivo models, thereby providing a high quality chemical probe to explore the therapeutic potential of disrupting the KEAP1-NRF2 interaction.


Assuntos
Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Animais , Células Cultivadas , Cristalografia por Raios X , Descoberta de Drogas , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/química , Camundongos , Fator 2 Relacionado a NF-E2/química , Ligação Proteica
4.
Nucleic Acids Res ; 43(18): 8638-50, 2015 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-26338776

RESUMO

With many safety and technical limitations partly mitigated through chemical modifications, antisense oligonucleotides (ASOs) are gaining recognition as therapeutic entities. The increase in potency realized by 'third generation chemistries' may, however, simultaneously increase affinity to unintended targets with partial sequence complementarity. However, putative hybridization-dependent off-target effects (OTEs), a risk historically regarded as low, are not being adequately investigated. Here we show an unexpectedly high OTEs confirmation rate during screening of fully phosphorothioated (PS)-LNA gapmer ASOs designed against the BACH1 transcript. We demonstrate in vitro mRNA and protein knockdown of off-targets with a wide range of mismatch (MM) and gap patterns. Furthermore, with RNase H1 activity residing within the nucleus, hybridization predicted against intronic regions of pre-mRNAs was tested and confirmed. This dramatically increased ASO-binding landscape together with relatively high potency of such interactions translates into a considerable safety concern. We show here that with base pairing-driven target recognition it is possible to predict the putative off-targets and address the liability during lead design and optimization phases. Moreover, in silico analysis performed against both primary as well as spliced transcripts will be invaluable in elucidating the mechanism behind the hepatoxicity observed with some LNA-modified gapmers.


Assuntos
Éxons , Técnicas de Silenciamento de Genes , Íntrons , Oligonucleotídeos Antissenso , Pareamento Incorreto de Bases , Células Cultivadas , Simulação por Computador , Inativação Gênica , Humanos , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/uso terapêutico , Ribonuclease H/metabolismo
5.
PLoS One ; 10(3): e0119738, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25780921

RESUMO

Endoplasmic reticulum stress plays a critical role to restore the homeostasis of protein production in eukaryotic cells. This vital process is hence involved in many types of diseases including COPD. PERK, one branch in the ER stress signaling pathways, has been reported to activate NRF2 signaling pathway, a known protective response to COPD. Based on this scientific rationale, we aimed to identify PERK activators as a mechanism to achieve NRF2 activation. In this report, we describe a phenotypic screening assay to identify PERK activators. This assay measures phosphorylation of GFP-tagged eIF2α upon PERK activation via a cell-based LanthaScreen technology. To obtain a robust assay with sufficient signal to background and low variation, multiple parameters were optimized including GFP-tagged eIF2α BacMam concentration, cell density and serum concentration. The assay was validated by a tool compound, Thapsigargin, which induces phosphorylation of eIF2α. In our assay, this compound showed maximal signal window of approximately 2.5-fold with a pEC50 of 8.0, consistent with literature reports. To identify novel PERK activators through phosphorylation of eIF2α, a focused set of 8,400 compounds was screened in this assay at 10 µM. A number of hits were identified and validated. The molecular mechanisms for several selected hits were further characterized in terms of PERK activation and effects on PERK downstream components. Specificity of these compounds in activating PERK was demonstrated with a PERK specific inhibitor and in PERK knockout mouse embryonic fibroblast (MEF) cells. In addition, these hits showed NRF2-dependent anti-oxidant gene induction. In summary, our phenotypic screening assay is demonstrated to be able to identify PERK specific activators. The identified PERK activators could potentially be used as chemical probes to further investigate this pathway as well as the link between PERK activation and NRF2 pathway activation.


Assuntos
Estresse do Retículo Endoplasmático , Ensaios de Triagem em Larga Escala/métodos , Fator 2 Relacionado a NF-E2/metabolismo , eIF-2 Quinase/fisiologia , Animais , Células Cultivadas , Fator de Iniciação 2 em Eucariotos/análise , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Fluorescência Verde/análise , Homeostase , Camundongos , Fenótipo , Fosforilação , Biossíntese de Proteínas , Transdução de Sinais , Bibliotecas de Moléculas Pequenas , Tapsigargina/química , eIF-2 Quinase/antagonistas & inibidores , eIF-2 Quinase/metabolismo
6.
Toxicol In Vitro ; 24(1): 310-8, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19706323

RESUMO

Chronic obstructive pulmonary disease (COPD) is an increasing health problem primarily associated with cigarette smoking, and one of the leading causes of morbidity and mortality worldwide. Despite recent advances in understanding the pathogenesis of the disease, overall patient outcome remains poor with limited therapeutic intervention. Chronic inflammation, an imbalance between proteolytic and anti-proteolytic activities (leading to lung parenchyma destruction) and excessive oxidative stress contribute to COPD pathophysiology. Oxidative stress-triggered apoptosis of alveolar structural cells, including epithelial cells, may be an important event in the development of COPD. In this study, we developed a cell-based oxidative stress-induced apoptosis assay and performed a high-throughput screen (HTS) using a human druggable genome siRNA library. Our results have identified potential novel pathways (e.g. unfolded protein response, proteosomal activity) and targets (e.g. MAP3K14, HMGB2) that regulate the response of lung epithelial cells to oxidative stress. This assay has proven to be a useful tool for the identification of potential new therapeutic targets for lung disease.


Assuntos
Antioxidantes/farmacologia , Apoptose/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Pulmão/citologia , Estresse Oxidativo/efeitos dos fármacos , Interferência de RNA/efeitos dos fármacos , Caspases/metabolismo , Linhagem Celular , Citocinas/biossíntese , Citometria de Fluxo , Biblioteca Gênica , Humanos , Peróxido de Hidrogênio/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Pulmão/efeitos dos fármacos , Oxidantes/toxicidade , Transdução de Sinais/efeitos dos fármacos , Transfecção
7.
Br J Pharmacol ; 145(5): 620-35, 2005 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15852036

RESUMO

1. SB-706375 potently inhibited [(125)I]hU-II binding to both mammalian recombinant and 'native' UT receptors (K(i) 4.7+/-1.5 to 20.7+/-3.6 nM at rodent, feline and primate recombinant UT receptors and K(i) 5.4+/-0.4 nM at the endogenous UT receptor in SJRH30 cells). 2. Prior exposure to SB-706375 (1 microM, 30 min) did not alter [(125)I]hU-II binding affinity or density in recombinant cells (K(D) 3.1+/-0.4 vs 5.8+/-0.9 nM and B(max) 3.1+/-1.0 vs 2.8+/-0.8 pmol mg(-1)) consistent with a reversible mode of action. 3. The novel, nonpeptidic radioligand [(3)H]SB-657510, a close analogue of SB-706375, bound to the monkey UT receptor (K(D) 2.6+/-0.4 nM, B(max) 0.86+/-0.12 pmol mg(-1)) in a manner that was inhibited by both U-II isopeptides and SB-706375 (K(i) 4.6+/-1.4 to 17.6+/-5.4 nM) consistent with the sulphonamides and native U-II ligands sharing a common UT receptor binding domain. 4. SB-706375 was a potent, competitive hU-II antagonist across species with pK(b) 7.29-8.00 in HEK293-UT receptor cells (inhibition of [Ca(2+)](i)-mobilization) and pK(b) 7.47 in rat isolated aorta (inhibition of contraction). SB-706375 also reversed tone established in the rat aorta by prior exposure to hU-II (K(app) approximately 20 nM). 5. SB-706375 was a selective U-II antagonist with >/=100-fold selectivity for the human UT receptor compared to 86 distinct receptors, ion channels, enzymes, transporters and nuclear hormones (K(i)/IC(50)>1 microM). Accordingly, the contractile responses induced in isolated aortae by KCl, phenylephrine, angiotensin II and endothelin-1 were unaltered by SB-706375 (1 microM). 6. In summary, SB-706375 is a high-affinity, surmountable, reversible and selective nonpeptide UT receptor antagonist with cross-species activity that will assist in delineating the pathophysiological actions of U-II in mammals.


Assuntos
Pirrolidinas/farmacologia , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/genética , Sulfonamidas/farmacologia , Algoritmos , Animais , Aorta Torácica/efeitos dos fármacos , Ligação Competitiva/efeitos dos fármacos , Gatos , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Haplorrinos , Humanos , Técnicas In Vitro , Camundongos , Contração Muscular/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Ensaio Radioligante , Ratos , Proteínas Recombinantes/metabolismo , Rabdomiossarcoma/metabolismo , Especificidade da Espécie
8.
Pharmacogenetics ; 14(9): 627-33, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15475736

RESUMO

BACKGROUND: Cysteinyl leukotrienes (CYSLTR) are potent biological mediators in the pathophysiology of asthma for which two receptors have been characterized, CYSLTR1 and CYSLTR2. The leukotriene modifying agents currently used to control bronchoconstriction and inflammation in asthmatic patients are CYSLTR1-specific leukotriene receptor antagonists. In this report, we investigated a possible role for therapeutic modulation of CYSLTR2 in asthma by investigating genetic association with asthma and further characterization of the pharmacology of a coding polymorphism. METHODS: The association of CYSLTR2 polymorphisms with asthma was assessed by transmission disequilibrium test in two family-based collections (359 families from Denmark and Minnesota, USA and 384 families from the Genetics of Asthma International Network). RESULTS: A significant association of the coding polymorphism, 601A>G, with asthma was observed (P = 0.003). We replicated these findings in a collection of 384 families from the Genetics of Asthma International Network (P = 0.04). The G allele is significantly under-transmitted to asthmatics, indicating a possible role for this receptor in resistance to asthma. The potency of cysteinyl leukotrienes at the wild-type CYSLTR2 and the coding polymorphism 601A>G were assessed using a calcium mobilization assay. The potency of LTC4 and LTE4 was similar for both forms of the receptor and LTB4 was inactive, however, LTD4 was approximately five-fold less potent on 601A>G compared to wild-type CYSLTR2. CONCLUSIONS: Since 601A>G alters the potency of LTD4 and this variant allele may be associated with resistance to asthma, it is possible that modulation of the CYSLTR2 may be useful in asthma pharmacotherapy.


Assuntos
Asma/genética , Leucotrieno D4/genética , Proteínas de Membrana/genética , Polimorfismo Genético , Receptores de Leucotrienos/genética , Adolescente , Adulto , Alelos , Linhagem Celular , Criança , Pré-Escolar , Clonagem Molecular , Saúde da Família , Variação Genética , Genótipo , Humanos , Leucotrienos/metabolismo , Desequilíbrio de Ligação , Pessoa de Meia-Idade , Fenótipo
9.
Pharmacology ; 72(1): 33-41, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15292653

RESUMO

Neuromedin U (NmU) is a smooth muscle contracting peptide. Recently, two G-protein-coupled receptors for NmU (NmU1R and NmU2R) have been cloned having approximately 50% homology. They have distinct patterns of expression suggesting they may have different biological functions. This study provides a comprehensive characterization of both NmU receptors expressed in human embryonic kidney 293 cells. [125I]hNmU binding to the recombinant NmU receptors was rapid, saturable, of high affinity and to a single population of binding sites. Exposure of these cells to NmU isopeptides resulted in an increase in intracellular [Ca2+]i release (EC50 value of 0.50 +/- 0.10 nmol/l) and inositol phosphate formation (EC50 1.6 +/- 0.2 and 1.50 +/- 0.4 nmol/l for NmU1R and NmU2R respectively). Furthermore, hNmU inhibited forskolin (3 micromol/l)-stimulated accumulation of cAMP in intact HEK-293 cells expressing either NmU1R or NmU2R. The inhibitory effect was significant for the cells expressing NmU2R with IC50 value of 0.80 +/- 0.21 nmol/l. In summary, both NmU1R and NmU2R in HEK-293 cells have similar signaling capability.


Assuntos
Proteínas de Membrana/metabolismo , Receptores de Neurotransmissores/metabolismo , Sítios de Ligação , Células Cultivadas , Células Clonais , Humanos , Rim/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Análise de Sequência com Séries de Oligonucleotídeos , Ensaio Radioligante , Receptores de Neurotransmissores/genética , Receptores de Neurotransmissores/fisiologia , Transdução de Sinais
10.
Br J Pharmacol ; 139(2): 203-7, 2003 May.
Artigo em Inglês | MEDLINE | ID: mdl-12770925

RESUMO

The functional activity of the peptidic neuromedin B receptor antagonist BIM-23127 was investigated at recombinant and native urotensin-II receptors (UT receptors). Human urotensin-II (hU-II) promoted intracellular calcium mobilization in HEK293 cells expressing the human UT (hUT) or rat UT (rUT) receptors with pEC(50) values of 9.80+/-0.34 (n=6) and 9.06+/-0.32 (n=4), respectively. While BIM-23127 alone had no effect on calcium responses in either cell line, it was a potent and competitive antagonist at both hUT (pA(2)=7.54+/-0.14; n=3) and rUT (pA(2)=7.70+/-0.05; n=3) receptors. Furthermore, BIM-23127 reversed hU-II-induced contractile tone in the rat-isolated aorta with a pIC(50) of 6.66+/-0.04 (n=4). In conclusion, BIM- 23127 is the first hUT receptor antagonist identified to date and should not be considered as a selective neuromedin B receptor antagonist.


Assuntos
Peptídeos Cíclicos/farmacologia , Receptores da Bombesina/antagonistas & inibidores , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Animais , Aorta Torácica/efeitos dos fármacos , Ligação Competitiva , Cálcio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Humanos , Técnicas In Vitro , Masculino , Ratos , Ratos Sprague-Dawley , Urotensinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...