Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prog Neurobiol ; 240: 102634, 2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38834133

RESUMO

Identification of transient receptor potential cation channel, subfamily V member 1 (TRPV1), also known as capsaicin receptor, in 1997 was a milestone achievement in the research on temperature sensation and pain signalling. Very soon after it became evident that TRPV1 is implicated in a wide array of physiological processes in different peripheral tissues, as well as in the central nervous system, and thereby could be involved in the pathophysiology of numerous diseases. Increasing evidence suggests that modulation of TRPV1 may also affect seizure susceptibility and epilepsy. This channel is localized in brain regions associated with seizures and epilepsy, and its overexpression was found both in animal models of seizures and in brain samples from epileptic patients. Moreover, modulation of TRPV1 on non-neuronal cells (microglia, astrocytes, and/or peripheral immune cells) may have an impact on the neuroinflammatory processes that play a role in epilepsy and epileptogenesis. In this paper, we provide a comprehensive and critical overview of currently available data on TRPV1 as a possible molecular target for epilepsy management, trying to identify research gaps and future directions. Overall, several converging lines of evidence implicate TRPV1 channel as a potentially attractive target in epilepsy research but more studies are needed to exploit the possible role of TRPV1 in seizures/epilepsy and to evaluate the value of TRPV1 ligands as candidates for new antiseizure drugs.

2.
Pharmacol Rep ; 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904713

RESUMO

Neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, Huntington's disease, and multiple sclerosis affect millions of people around the world. In addition to age, which is a key factor contributing to the development of all neurodegenerative diseases, genetic and environmental components are also important risk factors. Current methods of treating neurodegenerative diseases are mostly symptomatic and do not eliminate the cause of the disease. Many studies focus on searching for natural substances with neuroprotective properties that could be used as an adjuvant therapy in the inhibition of the neurodegeneration process. These compounds include flavonoids, such as luteolin, showing significant anti-inflammatory, antioxidant, and neuroprotective activity. Increasing evidence suggests that luteolin may confer protection against neurodegeneration. In this review, we summarize the scientific reports from preclinical in vitro and in vivo studies regarding the beneficial effects of luteolin in neurodegenerative diseases. Luteolin was studied most extensively in various models of Alzheimer's disease but there are also several reports showing its neuroprotective effects in models of Parkinson's disease. Though very limited, studies on possible protective effects of luteolin against Huntington's disease and multiple sclerosis are also discussed here. Overall, although preclinical studies show the potential benefits of luteolin in neurodegenerative disorders, clinical evidence on its therapeutic efficacy is still deficient.

3.
ACS Chem Neurosci ; 15(11): 2198-2222, 2024 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-38741575

RESUMO

In the present study, a series of original alaninamide derivatives have been designed applying a combinatorial chemistry approach, synthesized, and characterized in the in vivo and in vitro assays. The obtained molecules showed potent and broad-spectrum activity in basic seizure models, namely, the maximal electroshock (MES) test, the 6 Hz (32 mA) seizure model, and notably, the 6 Hz (44 mA) model of pharmacoresistant seizures. Most potent compounds 26 and 28 displayed the following pharmacological values: ED50 = 64.3 mg/kg (MES), ED50 = 15.6 mg/kg (6 Hz, 32 mA), ED50 = 29.9 mg/kg (6 Hz, 44 mA), and ED50 = 34.9 mg/kg (MES), ED50 = 12.1 mg/kg (6 Hz, 32 mA), ED50 = 29.5 mg/kg (6 Hz, 44 mA), respectively. Additionally, 26 and 28 were effective in the ivPTZ seizure threshold test and had no influence on the grip strength. Moreover, lead compound 28 was tested in the PTZ-induced kindling model, and then, its influence on glutamate and GABA levels in the hippocampus and cortex was evaluated by the high-performance liquid chromatography (HPLC) method. In addition, 28 revealed potent efficacy in formalin-induced tonic pain, capsaicin-induced pain, and oxaliplatin- and streptozotocin-induced peripheral neuropathy. Pharmacokinetic studies and in vitro ADME-Tox data proved favorable drug-like properties of 28. The patch-clamp recordings in rat cortical neurons showed that 28 at a concentration of 10 µM significantly inhibited fast sodium currents. Therefore, 28 seems to be an interesting candidate for future preclinical development in epilepsy and pain indications.


Assuntos
Analgésicos , Anticonvulsivantes , Convulsões , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/química , Anticonvulsivantes/síntese química , Analgésicos/farmacologia , Convulsões/tratamento farmacológico , Masculino , Ratos , Camundongos , Modelos Animais de Doenças , Ratos Wistar , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Eletrochoque , Neurônios/efeitos dos fármacos , Neurônios/metabolismo
4.
Int J Mol Sci ; 25(3)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38338780

RESUMO

The cryptoglandular perianal fistula is a common benign anorectal disorder that is managed mainly with surgery and in some cases may be an extremely challenging condition. Perianal fistulas are often characterized by significantly decreased patient quality of life. Lack of fully recognized pathogenesis of this disease makes it difficult to treat it properly. Recently, adipose tissue hormones have been proposed to play a role in the genesis of cryptoglandular anal fistulas. The expression of adipose tissue hormones and epithelial-to-mesenchymal transition (EMT) factors were characterized based on 30 samples from simple fistulas and 30 samples from complex cryptoglandular perianal fistulas harvested during surgery. Tissue levels of leptin, resistin, MMP2, and MMP9 were significantly elevated in patients who underwent operations due to complex cryptoglandular perianal fistulas compared to patients with simple fistulas. Adiponectin and E-cadherin were significantly lowered in samples from complex perianal fistulas in comparison to simple fistulas. A negative correlation between leptin and E-cadherin levels was observed. Resistin and MMP2 levels, as well as adiponectin and E-cadherin levels, were positively correlated. Complex perianal cryptoglandular fistulas have a reduced level of the anti-inflammatory adipokine adiponectin and have an increase in the levels of proinflammatory resistin and leptin. Abnormal secretion of these adipokines may affect the integrity of the EMT in the fistula tract. E-cadherin, MMP2, and MMP9 expression levels were shifted in patients with more advanced and complex perianal fistulas. Our results supporting the idea of using mesenchymal stem cells in the treatment of cryptoglandular perianal fistulas seem reasonable, but further studies are warranted.


Assuntos
Leptina , Fístula Retal , Humanos , Resistina , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz , Resultado do Tratamento , Qualidade de Vida , Adiponectina , Fístula Retal/etiologia , Tecido Adiposo/metabolismo , Caderinas
5.
Phytother Res ; 38(3): 1400-1461, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232725

RESUMO

Neuropsychiatric disorders are anticipated to be a leading health concern in the near future, emphasizing an outstanding need for the development of new effective therapeutics to treat them. Stilbenes, with resveratrol attracting the most attention, are an example of multi-target compounds with promising therapeutic potential for a broad array of neuropsychiatric and neurological conditions. This review is a comprehensive summary of the current state of research on stilbenes in several neuropsychiatric and neurological disorders such as depression, anxiety, schizophrenia, autism spectrum disorders, epilepsy, traumatic brain injury, and neurodegenerative disorders. We describe and discuss the results of both in vitro and in vivo studies. The majority of studies concentrate on resveratrol, with limited findings exploring other stilbenes such as pterostilbene, piceatannol, polydatin, tetrahydroxystilbene glucoside, or synthetic resveratrol derivatives. Overall, although extensive preclinical studies show the potential benefits of stilbenes in various central nervous system disorders, clinical evidence on their therapeutic efficacy is largely missing.


Assuntos
Lesões Encefálicas Traumáticas , Doenças Neurodegenerativas , Estilbenos , Humanos , Resveratrol , Doenças Neurodegenerativas/tratamento farmacológico , Lesões Encefálicas Traumáticas/tratamento farmacológico
6.
Psychopharmacology (Berl) ; 241(2): 327-340, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37966492

RESUMO

OBJECTIVE: Both animal and human studies, though limited, showed that multi-strain probiotic supplementation may reduce the number of seizures and/or seizure severity. Here, we evaluated the effect of a single strain probiotic supplementation on seizure susceptibility, antiseizure efficacy of sodium valproate, and several behavioral parameters in mice. METHODS: Lactobacillus helveticus R0052 was given orally for 28 days. Its influence on seizure thresholds was evaluated in the ivPTZ- and electrically-induced seizure tests. The effect on the antiseizure potency of valproate was assessed in the scPTZ test. We also investigated the effects of probiotic supplementation on anxiety-related behavior (in the elevated plus maze and light/dark box tests), motor coordination (in the accelerating rotarod test), neuromuscular strength (in the grip-strength test), and spontaneous locomotor activity. Serum and brain concentrations of valproate as well as cecal contents of SCFAs and lactate were determined using HPLC method. RESULTS: L. helveticus R0052 significantly increased the threshold for the 6 Hz-induced psychomotor seizure. There was also a slight increase in the threshold for myoclonic and clonic seizure in the ivPTZ test. L. helveticus R0052 did not affect the threshold for tonic seizures both in the maximal electroshock- and ivPTZ-induced seizure tests. No changes in the antiseizure potency of valproate against the PTZ-induced seizures were reported. Interestingly, L. helveticus R0052 increased valproate concentration in serum, but not in the brain. Moreover, L. helveticus R0052 did not produce any significant effects on anxiety-related behavior, motor coordination, neuromuscular strength, and locomotor activity. L. helveticus R0052 supplementation resulted in increased concentrations of total SCFAs, acetate, and butyrate. CONCLUSIONS: Altogether, this study shows that a single-strain probiotic - L. helveticus R0052 may decrease seizure susceptibility and this effect can be mediated, at least in part, by increased production of SCFAs. In addition, L. helveticus R0052 may affect bioavailability of valproate, which warrants further investigations.


Assuntos
Lactobacillus helveticus , Ácido Valproico , Humanos , Camundongos , Animais , Ácido Valproico/farmacologia , Ácido Valproico/uso terapêutico , Convulsões/tratamento farmacológico , Encéfalo , Suplementos Nutricionais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Eletrochoque
7.
Psychopharmacology (Berl) ; 241(5): 925-945, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38156998

RESUMO

RATIONALE: The gut microbiota may play an important role in the development and functioning of the mammalian central nervous system. The assumption of the experiment was to prove that the use of probiotic bacterial strains in the diet of mice modifies the expression of brain proteins involved in metabolic and immunological processes. OBJECTIVES AND RESULTS: Albino Swiss mice were administered with Bifidobacterium longum Rosell®-175 or Lactobacillus rhamnosus JB-1 every 24 h for 28 days. Protein maps were prepared from hippocampal homogenates of euthanized mice. Selected proteins that were statistically significant were purified and concentrated and identified using MALDI-TOF mass spectrometry. Among the analysed samples, 13 proteins were identified. The mean volumes of calcyon, secreted frizzled-associated protein 3, and catalase in the hippocampus of mice from both experimental groups were statistically significantly higher than in the control group. In mice supplemented with Lactobacillus rhamnosus JB-1, a lower mean volume of fragrance binding protein 2, shadow of prion protein, and glycine receptor α4 subunit was observed compared to the control. CONCLUSION: The psychobiotics Bifidobacterium longum Rosell®-175 and Lactobacillus rhamnosus JB-1enhances expression of proteins involved in the activation and maturation of nerve cells, as well as myelination and homeostatic regulation of neurogenesis in mice. The tested psychobiotics cause a decrease in the expression of proteins associated with CNS development and in synaptic transmission, thereby reducing the capacity for communication between nerve cells. The results of the study indicate that psychobiotic bacteria can be used in auxiliary treatment of neurological disorders.


Assuntos
Bifidobacterium longum , Lacticaseibacillus rhamnosus , Camundongos , Animais , Proteoma , Encéfalo , Mamíferos
8.
Drug Discov Today ; 29(2): 103861, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38122967

RESUMO

Progress in the understanding of the receptor GPR39 is held up by inconsistent pharmacological data. First, the endogenous ligand(s) remain(s) contentious. Data pointing to zinc ions (Zn2+) and/or eicosanoids as endogenous ligands are a matter of debate. Second, there are uncertainties in the specificity of the widely used synthetic ligand (agonist) TC-G 1008. Third, activation of GPR39 has been often proposed as a novel treatment strategy, but new data also support that inhibition might be beneficial in certain disease contexts. Constitutive activity/promiscuous signaling suggests the need for antagonists/inverse agonists in addition to (biased) agonists. Here, we scrutinize data on the signaling and functions of GPR39 and critically assess factors that might have contributed to divergent outcomes and interpretations of investigations on this important receptor.


Assuntos
Agonismo Inverso de Drogas , Receptores Acoplados a Proteínas G , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Proteínas de Transporte
10.
Molecules ; 28(9)2023 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-37175220

RESUMO

In contrast to the other components of the medium-chain triglycerides ketogenic diet (MCT KD), i.e., caprylic acid (CA8), a comprehensive evaluation of caproic (CA6) and lauric acids' (CA12) properties in standard chemical and electrical seizure tests in mice has not yet been performed. We investigated their effects in maximal electroshock seizure threshold (MEST), 6 Hz seizure threshold and intravenous (i.v.) pentylenetetrazole (PTZ) seizure tests. Since ketone body production can be regulated by the activation of 5'AMP-activated protein kinase (AMPK), we hypothesized that metformin (an AMPK activator) enhance ketogenesis and would act synergistically with the fatty acids to inhibit convulsions. We assessed the effects of acute and chronic co-treatment with metformin and CA6/CA8 on seizures. CA6 and CA12 (p.o.) increased seizure threshold in the 6 Hz seizure test. CA6 at the highest tested dose (30 mmol/kg) developed toxicity in several mice, impaired motor performance and induced ketoacidosis. Acute and chronic co-treatment with metformin and CA6/CA8 did not affect seizure thresholds. Moreover, we observed the pro-convulsive effect of the acute co-administration of CA8 (5 mmol/kg) and metformin (100 mg/kg). Since this co-treatment was pro-convulsive, the safety profile and risk/benefit ratio of MCT KD and metformin concomitant therapy in epileptic patients should be further evaluated.


Assuntos
Epilepsia , Metformina , Camundongos , Animais , Anticonvulsivantes/efeitos adversos , Metformina/farmacologia , Metformina/uso terapêutico , Proteínas Quinases Ativadas por AMP , Convulsões/induzido quimicamente , Epilepsia/tratamento farmacológico , Pentilenotetrazol/efeitos adversos , Eletrochoque/efeitos adversos , Relação Dose-Resposta a Droga , Modelos Animais de Doenças
11.
Int J Mol Sci ; 24(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176010

RESUMO

Epilepsy is a neurological disorder involving a number of disease syndromes with a complex etiology. A properly matched antiseizure drug (ASD) gives remission in up to 70% of patients. Nevertheless, there is still a group of about 30% of patients suffering from drug-resistant epilepsy. Consequently, the development of new more effective and/or safer ASDs is still an unmet clinical need. Thus, our current studies were focused on the structural optimization/modifications of one of the leading compounds, KA-11, aiming at the improvement of its antiseizure activity. As a result, we designed and synthesized two close analogs with highly pronounced drug-like physicochemical properties according to in silico predictions, namely KA-228 and KA-232, which were subsequently tested in a panel of animal seizure models, i.e., MES, 6 Hz (32 mA), scPTZ and ivPTZ. Among these compounds, KA-232, which was designed as a water-soluble salt, was distinctly more effective than KA-228 and assured similar antiseizure protection as its chemical prototype KA-11. With the aim of a more detailed characterization of both new molecules, in vitro binding tests were performed to evaluate the potential mechanisms of action. Furthermore, KA-232 was also evaluated in several ADME-Tox studies, and the results obtained strongly supported its drug-like potential. The proposed chemical modification of KA-11 enabled the identification of new pharmacologically active chemotypes, particularly water-soluble KA-232, which, despite the lack of better efficacy than the leading compound, may be used as a chemical prototype for the development of new ASDs, as well as substances potentially active in other neurological or neurodegenerative conditions.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Anticonvulsivantes/química , Convulsões/tratamento farmacológico , Epilepsia/tratamento farmacológico , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Modelos Animais de Doenças
12.
Cell Mol Life Sci ; 80(5): 133, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37185787

RESUMO

The pharmacological activation of the GPR39 receptor has been proposed as a novel strategy for treating seizures; however, this hypothesis has not been verified experimentally. TC-G 1008 is a small molecule agonist increasingly used to study GPR39 receptor function but has not been validated using gene knockout. Our aim was to assess whether TC-G 1008 produces anti-seizure/anti-epileptogenic effects in vivo and whether the effects are mediated by GPR39. To obtain this goal we utilized various animal models of seizures/epileptogenesis and GPR39 knockout mice model. Generally, TC-G 1008 exacerbated behavioral seizures. Furthermore, it increased the mean duration of local field potential recordings in response to pentylenetetrazole (PTZ) in zebrafish larvae. It facilitated the development of epileptogenesis in the PTZ-induced kindling model of epilepsy in mice. We demonstrated that TC-G 1008 aggravated PTZ-epileptogenesis by selectively acting at GPR39. However, a concomitant analysis of the downstream effects on the cyclic-AMP-response element binding protein in the hippocampus of GPR39 knockout mice suggested that the molecule also acts via other targets. Our data argue against GPR39 activation being a viable therapeutic strategy for treating epilepsy and suggest investigating whether TC-G 1008 is a selective agonist of the GPR39 receptor.


Assuntos
Epilepsia , Pentilenotetrazol , Animais , Camundongos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Epilepsia/induzido quimicamente , Epilepsia/genética , Epilepsia/metabolismo , Hipocampo/metabolismo , Camundongos Knockout , Pentilenotetrazol/metabolismo , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Peixe-Zebra/metabolismo
13.
Food Chem ; 417: 135928, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-36933426

RESUMO

We investigated the modulating effect of α-(1→3)-glucooligosaccharides (GOS), i.e. a product of fungal α-(1→3)-d-glucan hydrolysis, on the gut microbiota composition. Mice were fed with a GOS-supplemented diet and two control diets for 21 days, and fecal samples were collected at 0, 1, and 3-week time points. The bacterial community composition was determined by 16S rRNA gene Illumina sequencing. The gut microbiota of the GOS-supplemented mice showed profound time-dependent changes in the taxonomic composition; however, we did not observe significant changes in α-diversity indices. The biggest number of genus abundance shifts after 1 week of the treatment was noticed between the group of the GOS-supplemented mice and the controls; however, the differences were still relevant after the 3-week treatment. The GOS-supplemented mice displayed higher abundance of Prevotella spp., with a concomitant decrease in the abundance of Escherichia-Shigella. Hence, GOS seems to be a promising candidate for a new prebiotic.


Assuntos
Microbioma Gastrointestinal , Prebióticos , Camundongos , Animais , Prebióticos/análise , Glucanos , RNA Ribossômico 16S/genética , Hidrólise , Fezes/microbiologia , Oligossacarídeos
14.
Cells ; 12(2)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672199

RESUMO

The G-protein coupled receptor 39 (GPR39) is gaining increasing attention as a target for future drugs, yet there are gaps in the understanding of its pharmacology. Zinc is an endogenous agonist or an allosteric modulator, while TC-G 1008 is a synthetic, small molecule agonist. Zinc is also a positive allosteric modulator for the activity of TC-G 1008 at GPR39. Activation of GPR39 by TC-G 1008 facilitated the development of epileptogenesis in the pentylenetetrazole (PTZ)-induced kindling model of epilepsy. Congruently, TC-G 1008 decreased the seizure threshold in the maximal electroshock seizure threshold (MEST) test. Here, we investigated the effects of TC-G 1008 under the condition of zinc deficiency. Mice were fed a zinc-adequate diet (ZnA, 50 mg Zn/kg) or a zinc-deficient diet (ZnD, 3 mg Zn/kg) for 4 weeks. Following 4 weeks of dietary zinc restriction, TC-G 1008 was administered as a single dose and the MEST test was performed. Additional groups of mice began the PTZ-kindling model during which TC-G 1008 was administered repeatedly and the diet was continued. TC-G 1008 administered acutely decreased the seizure threshold in the MEST test in mice fed the ZnD diet but not in mice fed the ZnA diet. TC-G 1008 administered chronically increased the maximal seizure severity and the percentage of fully kindled mice in those fed the ZnA diet, but not in mice fed the ZnD diet. Our data showed that the amount of zinc in a diet is a factor contributing to the effects of TC-G 1008 in vivo.


Assuntos
Epilepsia , Pentilenotetrazol , Camundongos , Animais , Eletrochoque/efeitos adversos , Epilepsia/tratamento farmacológico , Convulsões/tratamento farmacológico , Receptores Acoplados a Proteínas G/agonistas , Zinco
15.
Pharmacol Ther ; 241: 108316, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436690

RESUMO

The peroxisome proliferator-activated receptor gamma (PPARγ), which belongs to the family of nuclear receptors, has been mainly studied as an important factor in metabolic disorders. However, in recent years the potential role of PPARγ in different neurological diseases has been increasingly investigated. Especially, in the search of therapeutic targets for patients with epilepsy the question of the involvement of PPARγ in seizure control has been raised. Epilepsy is a chronic neurological disorder causing a major impact on the psychological, social, and economic conditions of patients and their families, besides the problems of the disease itself. Considering that the world prevalence of epilepsy ranges between 0.5% - 1.0%, this condition is the fourth for importance among the other neurological disorders, following migraine, stroke, and dementia. Among others, temporal lobe epilepsy (TLE) is the most common form of epilepsy in adult patients. About 65% of individuals who receive antiseizure medications (ASMs) experience seizure independence. For those in whom seizures still recur, investigating PPARγ could lead to the development of novel ASMs. This review focuses on the most important findings from recent investigations about the potential intracellular PPARγ-dependent processes behind different compounds that exhibited anti-seizure effects. Additionally, recent clinical investigations are discussed along with the promising results found for PPARγ agonists and the ketogenic diet (KD) in various rodent models of epilepsy.


Assuntos
Epilepsia , Tiazolidinedionas , Humanos , PPAR gama/agonistas , PPAR gama/metabolismo , Tiazolidinedionas/uso terapêutico , Epilepsia/tratamento farmacológico
16.
J Med Chem ; 65(17): 11703-11725, 2022 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-35984707

RESUMO

(R)-7 [(R)-AS-1] showed broad-spectrum antiseizure activity across in vivo mouse seizure models: maximal electroshock (MES), 6 Hz (32/44 mA), acute pentylenetetrazol (PTZ), and PTZ-kindling. A remarkable separation between antiseizure activity and CNS-related adverse effects was also observed. In vitro studies with primary glia cultures and COS-7 cells expressing the glutamate transporter EAAT2 showed enhancement of glutamate uptake, revealing a stereoselective positive allosteric modulator (PAM) effect, further supported by molecular docking simulations. (R)-7 [(R)-AS-1] was not active in EAAT1 and EAAT3 assays and did not show significant off-target activity, including interactions with targets reported for marketed antiseizure drugs, indicative of a novel and unprecedented mechanism of action. Both in vivo pharmacokinetic and in vitro absorption, distribution, metabolism, excretion, toxicity (ADME-Tox) profiles confirmed the favorable drug-like potential of the compound. Thus, (R)-7 [(R)-AS-1] may be considered as the first-in-class small-molecule PAM of EAAT2 with potential for further preclinical and clinical development in epilepsy and possibly other CNS disorders.


Assuntos
Anticonvulsivantes , Epilepsia , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Epilepsia/induzido quimicamente , Epilepsia/tratamento farmacológico , Camundongos , Simulação de Acoplamento Molecular , Pentilenotetrazol , Convulsões/induzido quimicamente , Convulsões/tratamento farmacológico
17.
Cells ; 11(13)2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35805072

RESUMO

Several ligands have been proposed for the GPR39 receptor, including the element zinc. The relationship between GPR39 and magnesium homeostasis has not yet been examined, nor has such a relationship in the context of seizures/epilepsy. We used samples from mice that were treated with an agonist of the GPR39 receptor (TC-G 1008) and underwent acute seizures (maximal electroshock (MES)- or 6-hertz-induced seizures) or a chronic, pentylenetetrazole (PTZ)-induced kindling model of epilepsy. MES seizures and PTZ kindling, unlike 6 Hz seizures, increased serum magnesium concentration. In turn, Gpr39-KO mice that underwent PTZ kindling displayed decreased concentrations of this element in serum, compared to WT mice subjected to this procedure. However, the levels of expression of TRPM7 and SlC41A1 proteins-which are responsible for magnesium transport into and out of cells, respectively-did not differ in the hippocampus between Gpr39-KO and WT mice. Furthermore, laser ablation inductively coupled plasma mass spectrometry applied to hippocampal slices did not reveal differences in magnesium levels between the groups. These data show the relationship between magnesium homeostasis and certain types of acute or chronic seizures (MES seizures or PTZ kindling, respectively), but do not explicitly support the role of GPR39 in mediating magnesium balance in the hippocampus in the latter model. However, decreased expression of TRPM7 and increased expression of SLC41A1-which were observed in the hippocampi of Gpr39-KO mice treated with TC-G 1008, in comparison to WT mice that received the same treatment-implicitly support the link between GPR39 and hippocampal magnesium homeostasis.


Assuntos
Epilepsia , Canais de Cátion TRPM , Animais , Modelos Animais de Doenças , Magnésio , Camundongos , Camundongos Knockout , Pentilenotetrazol , Receptores Acoplados a Proteínas G/genética , Convulsões/induzido quimicamente , Canais de Cátion TRPM/genética
18.
Cells ; 11(12)2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35740990

RESUMO

In the present study, a focused combinatorial chemistry approach was applied to merge structural fragments of well-known TRPV1 antagonists with a potent anticonvulsant lead compound, KA-104, that was previously discovered by our group. Consequently, a series of 22 original compounds has been designed, synthesized, and characterized in the in vivo and in vitro assays. The obtained compounds showed robust in vivo antiseizure activity in the maximal electroshock (MES) test and in the 6 Hz seizure model (using both 32 and 44 mA current intensities). The most potent compounds 53 and 60 displayed the following pharmacological profile: ED50 = 89.7 mg/kg (MES), ED50 = 29.9 mg/kg (6 Hz, 32 mA), ED50 = 68.0 mg/kg (6 Hz, 44 mA), and ED50 = 73.6 mg/kg (MES), ED50 = 24.6 mg/kg (6 Hz, 32 mA), and ED50 = 56.3 mg/kg (6 Hz, 44 mA), respectively. Additionally, 53 and 60 were effective in the ivPTZ seizure threshold and had no influence on the grip strength and body temperature in mice. The in vitro binding and functional assays indicated a multimodal mechanism of action for 53 and 60. These molecules, beyond TRPV1 antagonism, inhibited calcium currents and fast sodium currents in patch-clamp assays. Further studies proved beneficial in vitro ADME-Tox properties for 53 and 60 (i.e., high metabolic stability, weak influence on CYPs, no neurotoxicity, etc.). Overall, 53 and 60 seem to be interesting candidates for future preclinical development in epilepsy and pain indications due to their interaction with the TRPV1 channel.


Assuntos
Anticonvulsivantes , Convulsões , Animais , Anticonvulsivantes/farmacologia , Anticonvulsivantes/uso terapêutico , Eletrochoque , Glicina/análogos & derivados , Camundongos , Estrutura Molecular , Convulsões/tratamento farmacológico
19.
Int J Mol Sci ; 22(23)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34884898

RESUMO

We report herein a series of water-soluble analogues of previously described anticonvulsants and their detailed in vivo and in vitro characterization. The majority of these compounds demonstrated broad-spectrum anticonvulsant properties in animal seizure models, including the maximal electroshock (MES) test, the pentylenetetrazole-induced seizure model (scPTZ), and the psychomotor 6 Hz (32 mA) seizure model in mice. Compound 14 showed the most robust anticonvulsant activity (ED50 MES = 49.6 mg/kg, ED50 6 Hz (32 mA) = 31.3 mg/kg, ED50scPTZ = 67.4 mg/kg). Notably, it was also effective in the 6 Hz (44 mA) model of drug-resistant epilepsy (ED50 = 63.2 mg/kg). Apart from favorable anticonvulsant properties, compound 14 revealed a high efficacy against pain responses in the formalin-induced tonic pain, the capsaicin-induced neurogenic pain, as well as in the oxaliplatin-induced neuropathic pain in mice. Moreover, compound 14 showed distinct anti-inflammatory activity in the model of carrageenan-induced aseptic inflammation. The mechanism of action of compound 14 is likely complex and may result from the inhibition of peripheral and central sodium and calcium currents, as well as the TRPV1 receptor antagonism as observed in the in vitro studies. This lead compound also revealed beneficial in vitro ADME-Tox properties and an in vivo pharmacokinetic profile, making it a potential candidate for future preclinical development. Interestingly, the in vitro studies also showed a favorable induction effect of compound 14 on the viability of neuroblastoma SH-SY5Y cells.


Assuntos
Acetamidas/administração & dosagem , Analgésicos/administração & dosagem , Anticonvulsivantes/administração & dosagem , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Dor/tratamento farmacológico , Convulsões/tratamento farmacológico , Acetamidas/farmacologia , Administração Intravenosa , Analgésicos/química , Analgésicos/farmacologia , Animais , Anticonvulsivantes/farmacologia , Canais de Cálcio/metabolismo , Capsaicina/efeitos adversos , Modelos Animais de Doenças , Epilepsia Resistente a Medicamentos/etiologia , Epilepsia Resistente a Medicamentos/metabolismo , Eletrochoque/efeitos adversos , Formaldeído/efeitos adversos , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Oxaliplatina/efeitos adversos , Dor/induzido quimicamente , Dor/metabolismo , Pentilenotetrazol/efeitos adversos , Convulsões/etiologia , Convulsões/metabolismo , Canais de Sódio/metabolismo , Canais de Cátion TRPV/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-34886095

RESUMO

Experimental studies have demonstrated that general anesthetics administered during the period of synaptogenesis may induce widespread neurodegeneration, which results in permanent cognitive and behavioral deficits. What remains to be elucidated is the extent of the potential influence of the commonly used hypnotics on comorbidities including epilepsy, which may have resulted from increased neurodegeneration during synaptogenesis. This study aimed to test the hypothesis that neuropathological changes induced by anesthetics during synaptogenesis may lead to changes in the seizure threshold during adulthood. Wistar rat pups were treated with propofol, sevoflurane, or saline on the sixth postnatal day. The long-term effects of prolonged propofol and sevoflurane anesthesia on epileptogenesis were assessed using corneal kindling, pilocarpine-, and pentylenetetrazole-induced seizure models in adult animals. Body weight gain was measured throughout the experiment. No changes in the seizure threshold were observed in the three models. A significant weight gain after exposure to anesthetics during synaptogenesis was observed in the propofol group but not in the sevoflurane group. The results suggest that single prolonged exposure to sevoflurane or propofol during synaptogenesis may have no undesirable effects on epileptogenesis in adulthood.


Assuntos
Anestesia , Éteres Metílicos , Propofol , Adulto , Animais , Pré-Escolar , Humanos , Propofol/toxicidade , Ratos , Ratos Wistar , Convulsões/induzido quimicamente , Sevoflurano/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...