Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 3749, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37353496

RESUMO

Coccolithophores are globally abundant, calcifying microalgae that have profound effects on marine biogeochemical cycles, the climate, and life in the oceans. They are characterized by a cell wall of CaCO3 scales called coccoliths, which may contribute to their ecological success. The intricate morphologies of coccoliths are of interest for biomimetic materials synthesis. Despite the global impact of coccolithophore calcification, we know little about the molecular machinery underpinning coccolithophore biology. Working on the model Emiliania huxleyi, a globally distributed bloom-former, we deploy a range of proteomic strategies to identify coccolithogenesis-related proteins. These analyses are supported by a new genome, with gene models derived from long-read transcriptome sequencing, which revealed many novel proteins specific to the calcifying haptophytes. Our experiments provide insights into proteins involved in various aspects of coccolithogenesis. Our improved genome, complemented with transcriptomic and proteomic data, constitutes a new resource for investigating fundamental aspects of coccolithophore biology.


Assuntos
Haptófitas , Proteômica , Calcificação Fisiológica/genética , Oceanos e Mares , Genômica , Haptófitas/genética , Haptófitas/metabolismo
2.
Proc Natl Acad Sci U S A ; 120(4): e2213887120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669098

RESUMO

Massive DNA excision occurs regularly in ciliates, ubiquitous microbial eukaryotes with somatic and germline nuclei in the same cell. Tens of thousands of internally eliminated sequences (IESs) scattered throughout the ciliate germline genome are deleted during the development of the streamlined somatic genome. The genus Blepharisma represents one of the two high-level ciliate clades (subphylum Postciliodesmatophora) and, unusually, has dual pathways of somatic nuclear and genome development. This makes it ideal for investigating the functioning and evolution of these processes. Here we report the somatic genome assembly of Blepharisma stoltei strain ATCC 30299 (41 Mbp), arranged as numerous telomere-capped minichromosomal isoforms. This genome encodes eight PiggyBac transposase homologs no longer harbored by transposons. All appear subject to purifying selection, but just one, the putative IES excisase, has a complete catalytic triad. We hypothesize that PiggyBac homologs were ancestral excisases that enabled the evolution of extensive natural genome editing.


Assuntos
Cilióforos , Paramecium tetraurellia , Edição de Genes , Genoma , Cilióforos/genética , Paramecium tetraurellia/metabolismo , Núcleo Celular/metabolismo , DNA de Protozoário/genética
3.
Proc Natl Acad Sci U S A ; 120(4): e2213985120, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36669106

RESUMO

During their development following sexual conjugation, ciliates excise numerous internal eliminated sequences (IESs) from a copy of the germline genome to produce the functional somatic genome. Most IESs are thought to have originated from transposons, but the presumed homology is often obscured by sequence decay. To obtain more representative perspectives on the nature of IESs and ciliate genome editing, we assembled 40,000 IESs of Blepharisma stoltei, a species belonging to a lineage (Heterotrichea) that diverged early from those of the intensively studied model ciliate species. About a quarter of IESs were short (<115 bp), largely nonrepetitive, and with a pronounced ~10 bp periodicity in length; the remainder were longer (up to 7 kbp) and nonperiodic and contained abundant interspersed repeats. Contrary to the expectation from current models, the assembled Blepharisma germline genome encodes few transposases. Instead, its most abundant repeat (8,000 copies) is a Miniature Inverted-repeat Transposable Element (MITE), apparently a deletion derivative of a germline-limited Pogo-family transposon. We hypothesize that MITEs are an important source of IESs whose proliferation is eventually self-limiting and that rather than defending the germline genomes against mobile elements, transposase domestication actually facilitates the accumulation of junk DNA.


Assuntos
Cilióforos , Elementos de DNA Transponíveis , Edição de Genes , Humanos , Cilióforos/genética , Elementos de DNA Transponíveis/genética , DNA de Protozoário/genética , Células Germinativas/metabolismo , Transposases/genética , Transposases/metabolismo
4.
BMC Genom Data ; 23(1): 70, 2022 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-36057561

RESUMO

OBJECTIVES: Lathyrus tuberosus is a nitrogen-fixing member of the Fabaceae which forms protein-rich tubers. To aid future domestication programs for this legume plant and facilitate evolutionary studies of tuber formation, we have generated a draft genome assembly based on Pacific Biosciences sequence reads. DATA DESCRIPTION: Genomic DNA from L. tuberosus was sequenced with PacBio's HiFi sequencing chemistry generating 12.8 million sequence reads with an average read length of 14 kb (approximately 180 Gb of sequence data). The reads were assembled to give a draft genome of 6.8 Gb in 1353 contigs with an N50 contig length of 11.1 Mb. The GC content of the genome assembly was 38.3%. BUSCO analysis of the genome assembly indicated a genome completeness of at least 96%. The genome sequence will be a valuable resource, for example, in assessing genomic consequences of domestication efforts and developing marker sets for breeding programs. The L. tuberosus genome will also aid in the analysis of the evolutionary history of plants within the nitrogen-fixing Fabaceae family and in understanding the molecular basis of tuber evolution.


Assuntos
Fabaceae , Lathyrus , Fabaceae/genética , Genoma , Lathyrus/genética , Nitrogênio , Melhoramento Vegetal
5.
Proc Natl Acad Sci U S A ; 119(25): e2200198119, 2022 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-35704763

RESUMO

Benthic foraminifera are unicellular eukaryotes that inhabit sediments of aquatic environments. Several foraminifera of the order Rotaliida are known to store and use nitrate for denitrification, a unique energy metabolism among eukaryotes. The rotaliid Globobulimina spp. has been shown to encode an incomplete denitrification pathway of bacterial origin. However, the prevalence of denitrification genes in foraminifera remains unknown, and the missing denitrification pathway components are elusive. Analyzing transcriptomes and metagenomes of 10 foraminiferal species from the Peruvian oxygen minimum zone, we show that denitrification genes are highly conserved in foraminifera. We infer the last common ancestor of denitrifying foraminifera, which enables us to predict the ability to denitrify for additional foraminiferal species. Additionally, an examination of the foraminiferal microbiota reveals evidence for a stable interaction with Desulfobacteraceae, which harbor genes that complement the foraminiferal denitrification pathway. Our results provide evidence that foraminiferal denitrification is complemented by the foraminifera-associated microbiome. The interaction of foraminifera with their resident bacteria is at the basis of foraminiferal adaptation to anaerobic environments that manifested in ecological success in oxygen depleted habitats.


Assuntos
Bactérias , Foraminíferos , Interações entre Hospedeiro e Microrganismos , Bactérias/genética , Bactérias/metabolismo , Desnitrificação/genética , Eucariotos/metabolismo , Foraminíferos/genética , Foraminíferos/metabolismo , Nitratos/metabolismo , Oxigênio/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-35511036

RESUMO

Modified atmosphere (MA) packaging plays an important role in improving food quality and safety. By using different gas mixtures and packaging materials the shelf life of fresh produce can significantly be increased. A Gram-negative-staining, rod-shaped, orange-pigmented strain DH-B6T, has been isolated from MA packed raw pork sausage (20% CO2, 80% O2). The strain produced biofilms and showed growth at high CO2 levels of up to 40%. Complete 16S rRNA gene and whole-genome sequences revealed that strain DH-B6T belongs to the genus Chryseobacterium, being closely related to strain Chryseobacterium indologenes DSM 16777T (98.4%), followed by Chryseobacterium gleum NCTC11432T (98.3%) and Chryseobacterium lactis KC1864T (98.2%). Average nucleotide identity value between DH-B6T and C. indologenes DSM 16777T was 81.1% and digital DNA-DNA hybridisation was 24.9%, respectively. The DNA G+C content was 35.51 mol%. Chemotaxonomical analysis revealed the presence of the rare glycine lipid cytolipin, the serine-glycine lipid flavolipin and the sulfonolipid sulfobacin A, as well as phosphatidylethanolamine, monohexosyldiacylglycerol and ornithine lipid, including the hydroxylated forms. Major fatty acids were iC15 : 0 (50.7%) and iC17 : 1 cis 9 (28.7%), followed by iC15 : 0 2-OH (7.0%) and iC17 : 0 3-OH (6.2%). The isolated strain contained MK-6 as the only respiratory quinone and flexirubin-like pigments were detected as the major pigments. Based on the phenotypic, chemotaxonomic and phylogenetic characteristics, the strain DH-B6T (=DSM 110542T=LMG 31915T) represents a novel species of the genus Chryseobacterium, for which the name Chryseobacterium capnotolerans sp. nov. is proposed. Emended descriptions of the genus Chryseobacterium and eight species of this genus based on polar lipid characterisation are also proposed.


Assuntos
Chryseobacterium , Atmosfera/análise , Técnicas de Tipagem Bacteriana , Composição de Bases , Dióxido de Carbono , DNA Bacteriano/genética , Ácidos Graxos/química , Glicina/genética , Lipídeos/análise , Hibridização de Ácido Nucleico , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Artigo em Inglês | MEDLINE | ID: mdl-34435946

RESUMO

Species belonging to the genus Sphingomonas have been isolated from environments such as soil, water and plant tissues. Many strains are known for their capability of degrading aromatic molecules and producing extracellular polymers. A Gram-stain-negative, strictly aerobic, motile, red-pigmented, oxidase-negative, catalase-positive, rod-shaped strain, designated DH-S5T, has been isolated from pork steak packed under CO2-enriched modified atmosphere. Cell diameters were 1.5×0.9 µm. Growth optima were at 30 °C and at pH 6.0. Phylogenetic analyses based on both complete 16S rRNA gene sequence and whole-genome sequence data revealed that strain DH-S5T belongs to the genus Sphingomonas, being closely related to Sphingomonas alpina DSM 22537T (97.4 % gene sequence similarity), followed by Sphingomonas qilianensis X1T (97.4 %) and Sphingomonas hylomeconis GZJT-2T (97.3 %). The DNA G+C content was 64.4 mol%. The digital DNA-DNA hybridization value between the isolate strain and S. alpina DSM 22537T was 21.0 % with an average nucleotide identity value of 77.03 %. Strain DH-S5T contained Q-10 as the ubiquinone and major fatty acids were C18 : 1 cis 11 (39.3 %) and C16 : 1 cis 9 (12.5 %), as well as C16 : 0 (12.1 %) and C14 : 0 2-OH (11.4 %). As for polar lipids, phosphatidylcholine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylethanolamine, dimethylphosphatidylethanolamine and sphingoglycolipid could be detected, alongside traces of monomethylphosphatidylethanolamine. Based on its phenotypic, chemotaxonomic and phylogenetic characteristics, strain DH-S5T (=DSM 110829T=LMG 31606T) is classified as a representative of the genus Sphingomonas, for which the name Sphingomonas aliaeris sp. nov. is proposed.


Assuntos
Filogenia , Carne de Porco , Sphingomonas , Animais , Atmosfera , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Microbiologia de Alimentos , Alemanha , Fosfolipídeos/química , Pigmentação , Carne de Porco/microbiologia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sphingomonas/classificação , Sphingomonas/isolamento & purificação , Suínos
8.
Gigascience ; 10(5)2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-34018554

RESUMO

BACKGROUND: Genome sequencing of all known eukaryotes on Earth promises unprecedented advances in biological sciences and in biodiversity-related applied fields such as environmental management and natural product research. Advances in long-read DNA sequencing make it feasible to generate high-quality genomes for many non-genetic model species. However, long-read sequencing today relies on sizable quantities of high-quality, high molecular weight DNA, which is mostly obtained from fresh tissues. This is a challenge for biodiversity genomics of most metazoan species, which are tiny and need to be preserved immediately after collection. Here we present de novo genomes of 2 species of submillimeter Collembola. For each, we prepared the sequencing library from high molecular weight DNA extracted from a single specimen and using a novel ultra-low input protocol from Pacific Biosciences. This protocol requires a DNA input of only 5 ng, permitted by a whole-genome amplification step. RESULTS: The 2 assembled genomes have N50 values >5.5 and 8.5 Mb, respectively, and both contain ∼96% of BUSCO genes. Thus, they are highly contiguous and complete. The genomes are supported by an integrative taxonomy approach including placement in a genome-based phylogeny of Collembola and designation of a neotype for 1 of the species. Higher heterozygosity values are recorded in the more mobile species. Both species are devoid of the biosynthetic pathway for ß-lactam antibiotics known in several Collembola, confirming the tight correlation of antibiotic synthesis with the species way of life. CONCLUSIONS: It is now possible to generate high-quality genomes from single specimens of minute, field-preserved metazoans, exceeding the minimum contig N50 (1 Mb) required by the Earth BioGenome Project.


Assuntos
Artrópodes , Etanol , Animais , Artrópodes/genética , Genoma , Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Análise de Sequência de DNA
9.
Nature ; 591(7850): 445-450, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33658719

RESUMO

Mitochondria are specialized eukaryotic organelles that have a dedicated function in oxygen respiration and energy production. They evolved about 2 billion years ago from a free-living bacterial ancestor (probably an alphaproteobacterium), in a process known as endosymbiosis1,2. Many unicellular eukaryotes have since adapted to life in anoxic habitats and their mitochondria have undergone further reductive evolution3. As a result, obligate anaerobic eukaryotes with mitochondrial remnants derive their energy mostly from fermentation4. Here we describe 'Candidatus Azoamicus ciliaticola', which is an obligate endosymbiont of an anaerobic ciliate and has a dedicated role in respiration and providing energy for its eukaryotic host. 'Candidatus A. ciliaticola' contains a highly reduced 0.29-Mb genome that encodes core genes for central information processing, the electron transport chain, a truncated tricarboxylic acid cycle, ATP generation and iron-sulfur cluster biosynthesis. The genome encodes a respiratory denitrification pathway instead of aerobic terminal oxidases, which enables its host to breathe nitrate instead of oxygen. 'Candidatus A. ciliaticola' and its ciliate host represent an example of a symbiosis that is based on the transfer of energy in the form of ATP, rather than nutrition. This discovery raises the possibility that eukaryotes with mitochondrial remnants may secondarily acquire energy-providing endosymbionts to complement or replace functions of their mitochondria.


Assuntos
Anaerobiose , Bactérias/metabolismo , Cilióforos/metabolismo , Desnitrificação , Metabolismo Energético , Interações entre Hospedeiro e Microrganismos , Simbiose , Trifosfato de Adenosina/metabolismo , Bactérias/genética , Evolução Biológica , Respiração Celular , Cilióforos/química , Cilióforos/citologia , Ciclo do Ácido Cítrico/genética , Transporte de Elétrons/genética , Genoma Bacteriano/genética , Interações entre Hospedeiro e Microrganismos/genética , Mitocôndrias , Nitratos/metabolismo , Oxigênio/metabolismo , Filogenia
10.
FEBS J ; 288(10): 3197-3216, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33205554

RESUMO

Polymerizing and filament-forming proteins are instrumental for numerous cellular processes such as cell division and growth. Their function in stabilization and localization of protein complexes and replicons is achieved by a filamentous structure. Known filamentous proteins assemble into homopolymers consisting of single subunits - for example, MreB and FtsZ in bacteria - or heteropolymers that are composed of two subunits, for example, keratin and α/ß tubulin in eukaryotes. Here, we describe two novel coiled-coil-rich proteins (CCRPs) in the filament-forming cyanobacterium Anabaena sp. PCC 7120 (hereafter Anabaena) that assemble into a heteropolymer and function in the maintenance of the Anabaena multicellular shape (termed trichome). The two CCRPs - Alr4504 and Alr4505 (named ZicK and ZacK) - are strictly interdependent for the assembly of protein filaments in vivo and polymerize nucleotide independently in vitro, similar to known intermediate filament (IF) proteins. A ΔzicKΔzacK double mutant is characterized by a zigzagged cell arrangement and hence a loss of the typical linear Anabaena trichome shape. ZicK and ZacK interact with themselves, with each other, with the elongasome protein MreB, the septal junction protein SepJ and the divisome associate septal protein SepI. Our results suggest that ZicK and ZacK function in cooperation with SepJ and MreB to stabilize the Anabaena trichome and are likely essential for the manifestation of the multicellular shape in Anabaena. Our study reveals the presence of filament-forming IF-like proteins whose function is achieved through the formation of heteropolymers in cyanobacteria.


Assuntos
Anabaena/genética , Proteínas de Bactérias/genética , Proteínas do Citoesqueleto/genética , Citoesqueleto/genética , Regulação Bacteriana da Expressão Gênica , Tricomas/genética , Anabaena/metabolismo , Anabaena/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Divisão Celular , Clonagem Molecular , Sequência Conservada , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestrutura , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Genes Reporter , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histidina/genética , Histidina/metabolismo , Oligopeptídeos/genética , Oligopeptídeos/metabolismo , Polimerização , Multimerização Proteica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tricomas/metabolismo , Tricomas/ultraestrutura
11.
Front Microbiol ; 11: 523689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123095

RESUMO

Ferredoxins are iron-sulfur proteins essential for a wide range of organisms because they are an electron transfer mediator involved in multiple metabolic pathways. In phytoplankton, these proteins are active in the mature chloroplasts, but the petF gene, encoding for ferredoxin, has been found either to be in the chloroplast genome or transferred to the nuclear genome as observed in the green algae and higher plant lineage. We experimentally determined the location of the petF gene in 12 strains of Thalassiosira covering three species using DNA sequencing and qPCR assays. The results showed that petF gene is located in the nuclear genome of all confirmed Thalassiosira oceanica strains (CCMP0999, 1001, 1005, and 1006) tested. In contrast, all Thalassiosira pseudonana (CCMP1012, 1013, 1014, and 1335) and Thalassiosira weissflogii (CCMP1010, 1049, and 1052) strains studied retained the gene in the chloroplast genome, as generally observed for Bacillariophyceae. Our evolutionary analyses further extend the dataset on the localization of the petF gene in the Thalassiosirales. The realization that the petF gene is nuclear-encoded in the Skeletonema genus allowed us to trace the petF gene transfer back to a single event that occurred within the paraphyletic genus Thalassiosira. Phylogenetic analyses revealed the need to reassess the taxonomic assignment of the Thalassiosira strain CCMP1616, since the genes used in our study did not cluster within the T. oceanica lineage. Our results suggest that this strains' diversification occurred prior to the ferredoxin gene transfer event. The functional transfer of petF genes provides insight into the evolutionary processes leading to chloroplast genome reduction and suggests ecological adaptation as a driving force for such chloroplast to nuclear gene transfer.

12.
Int J Syst Evol Microbiol ; 70(5): 3027-3036, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32223834

RESUMO

A pink-coloured bacterium (strain KR32T) was isolated from cheese and assigned to the 'Arthrobacter agilis group'. Members of the 'pink Arthrobacter agilis group' form a stable clade (100 % bootstrap value) and contain the species Arthrobacter agilis, Arthrobacter ruber and Arthrobacter echini, which share ≥99.0 % 16S rRNA gene sequence similarity. Isolate KR32T showed highest 16S rRNA gene sequence similarity (99.9 %) to A. agilis DSM 20550T. Additional multilocus sequence comparison confirmed the assignment of strain KR32T to the clade 'pink A. agilis group'. Average nucleotide identity and digital DNA-DNA hybridization values between isolate KR32T and A. agilis DSM 20550T were 82.85 and 26.30 %, respectively. The G+C content of the genomic DNA of isolate KR32T was 69.14 mol%. Chemotaxonomic analysis determined anteiso-C15 : 0 as the predominant fatty acid and MK-9(H2) as the predominant menaquinone. Polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and monoacyldimannosyl-monoacylglycerol. The peptidoglycan type of the isolate was A3α. The carotenoid bacterioruberin was detected as the major pigment. At 10 °C, strain KR32T grew with increased concentrations of bacterioruberin and production of unsaturated fatty acids. Strain KR32T was a Gram-stain-positive, catalase-positive, oxidase-positive and coccus-shaped bacterium with optimal growth at 27-30 °C and pH 8. The results of phylogenetic and phenotypic analyses enabled the differentiation of the isolate from other closely related species of the 'pink A. agilis group'. Therefore, strain KR32T represents a novel species for which the name Arthrobacter bussei sp. nov. is proposed. The type strain is KR32T (=DSM 109896T=LMG 31480T=NCCB 100733T).


Assuntos
Arthrobacter/classificação , Queijo/microbiologia , Microbiologia de Alimentos , Filogenia , Animais , Arthrobacter/isolamento & purificação , Técnicas de Tipagem Bacteriana , Composição de Bases , Bovinos , Parede Celular/química , DNA Bacteriano/genética , Ácidos Graxos/química , Feminino , Alemanha , Glicolipídeos/química , Leite , Hibridização de Ácido Nucleico , Peptidoglicano/química , Fosfolipídeos/química , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
13.
Sci Rep ; 10(1): 1894, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-32024928

RESUMO

Filament-forming proteins in bacteria function in stabilization and localization of proteinaceous complexes and replicons; hence they are instrumental for myriad cellular processes such as cell division and growth. Here we present two novel filament-forming proteins in cyanobacteria. Surveying cyanobacterial genomes for coiled-coil-rich proteins (CCRPs) that are predicted as putative filament-forming proteins, we observed a higher proportion of CCRPs in filamentous cyanobacteria in comparison to unicellular cyanobacteria. Using our predictions, we identified nine protein families with putative intermediate filament (IF) properties. Polymerization assays revealed four proteins that formed polymers in vitro and three proteins that formed polymers in vivo. Fm7001 from Fischerella muscicola PCC 7414 polymerized in vitro and formed filaments in vivo in several organisms. Additionally, we identified a tetratricopeptide repeat protein - All4981 - in Anabaena sp. PCC 7120 that polymerized into filaments in vitro and in vivo. All4981 interacts with known cytoskeletal proteins and is indispensable for Anabaena viability. Although it did not form filaments in vitro, Syc2039 from Synechococcus elongatus PCC 7942 assembled into filaments in vivo and a Δsyc2039 mutant was characterized by an impaired cytokinesis. Our results expand the repertoire of known prokaryotic filament-forming CCRPs and demonstrate that cyanobacterial CCRPs are involved in cell morphology, motility, cytokinesis and colony integrity.


Assuntos
Anabaena/citologia , Proteínas de Bactérias/metabolismo , Cianobactérias/citologia , Proteínas do Citoesqueleto/metabolismo , Synechococcus/citologia , Motivos de Aminoácidos/genética , Anabaena/genética , Anabaena/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/isolamento & purificação , Cianobactérias/genética , Cianobactérias/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/isolamento & purificação , Citoesqueleto/metabolismo , Genes Bacterianos/genética , Mutação , Conformação Proteica em alfa-Hélice/genética , Multimerização Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Synechococcus/genética , Synechococcus/metabolismo
14.
Trends Microbiol ; 27(10): 836-849, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31257129

RESUMO

Symbiotic interactions between eukaryotes and prokaryotes are widespread in nature. Here we offer a conceptual framework to study the evolutionary origins and ecological circumstances of species in beneficial symbiosis. We posit that mutual symbiotic interactions are well described by three elements: a currency, the mechanism of currency exchange, and mechanisms of symbiont inheritance. Each of these elements may be at the origin of symbiosis, with the other elements developing with time. The identity of currency in symbiosis depends on the ecological context of the symbiosis, while the specificity of the exchange mechanism underlies molecular adaptations for the symbiosis. The inheritance regime determines the degree of partner dependency and the symbiosis evolutionary trajectory. Focusing on these three elements, we review examples and open questions in the research on symbiosis.


Assuntos
Evolução Biológica , Eucariotos , Organelas , Simbiose , Testamentos , Cloroplastos , Interações entre Hospedeiro e Microrganismos/fisiologia , Mitocôndrias
15.
Mol Biol Evol ; 36(3): 472-486, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30517696

RESUMO

The ubiquity of plasmids in all prokaryotic phyla and habitats and their ability to transfer between cells marks them as prominent constituents of prokaryotic genomes. Many plasmids are found in their host cell in multiple copies. This leads to an increased mutational supply of plasmid-encoded genes and genetically heterogeneous plasmid genomes. Nonetheless, the segregation of plasmid copies into daughter cells during cell division is considered to occur in the absence of selection on the plasmid alleles. We investigate the implications of random genetic drift of multicopy plasmids during cell division-termed here "segregational drift"-to plasmid evolution. Performing experimental evolution of low- and high-copy non-mobile plasmids in Escherichia coli, we find that the evolutionary rate of multicopy plasmids does not reflect the increased mutational supply expected according to their copy number. In addition, simulated evolution of multicopy plasmid alleles demonstrates that segregational drift leads to increased loss frequency and extended fixation time of plasmid mutations in comparison to haploid chromosomes. Furthermore, an examination of the experimentally evolved hosts reveals a significant impact of the plasmid type on the host chromosome evolution. Our study demonstrates that segregational drift of multicopy plasmids interferes with the retention and fixation of novel plasmid variants. Depending on the selection pressure on newly emerging variants, plasmid genomes may evolve slower than haploid chromosomes, regardless of their higher mutational supply. We suggest that plasmid copy number is an important determinant of plasmid evolvability due to the manifestation of segregational drift.


Assuntos
Evolução Biológica , Deriva Genética , Modelos Genéticos , Plasmídeos/genética , Cromossomos Bacterianos , Escherichia coli , Frequência do Gene
16.
Curr Biol ; 28(16): 2536-2543.e5, 2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30078568

RESUMO

Benthic foraminifera are unicellular eukaryotes inhabiting sediments of aquatic environments. Several species were shown to store and use nitrate for complete denitrification, a unique energy metabolism among eukaryotes. The population of benthic foraminifera reaches high densities in oxygen-depleted marine habitats, where they play a key role in the marine nitrogen cycle. However, the mechanisms of denitrification in foraminifera are still unknown, and the possibility of a contribution of associated bacteria is debated. Here, we present evidence for a novel eukaryotic denitrification pathway that is encoded in foraminiferal genomes. Large-scale genome and transcriptomes analyses reveal the presence of a denitrification pathway in foraminifera species of the genus Globobulimina. This includes the enzymes nitrite reductase (NirK) and nitric oxide reductase (Nor) as well as a wide range of nitrate transporters (Nrt). A phylogenetic reconstruction of the enzymes' evolutionary history uncovers evidence for an ancient acquisition of the foraminiferal denitrification pathway from prokaryotes. We propose a model for denitrification in foraminifera, where a common electron transport chain is used for anaerobic and aerobic respiration. The evolution of hybrid respiration in foraminifera likely contributed to their ecological success, which is well documented in palaeontological records since the Cambrian period.


Assuntos
Desnitrificação/genética , Foraminíferos/genética , Foraminíferos/metabolismo , Proteínas de Protozoários/genética , Proteínas de Transporte de Ânions/genética , Proteínas de Transporte de Ânions/metabolismo , Foraminíferos/enzimologia , Genoma de Protozoário , Transportadores de Nitrato , Nitrito Redutases/genética , Nitrito Redutases/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , Proteínas de Protozoários/metabolismo
17.
Genome Biol Evol ; 9(7): 1873-1879, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28854599

RESUMO

Some sacoglossan sea slugs sequester functional plastids (kleptoplasts) from their food, which continue to fix CO2 in a light dependent manner inside the animals. In plants and algae, plastid and mitochondrial metabolism are linked in ways that reach beyond the provision of energy-rich carbon compounds through photosynthesis, but how slug mitochondria respond to starvation or alterations in plastid biochemistry has not been explored. We assembled the mitochondrial genomes of the plastid-sequestering sea slugs Elysia timida and Elysia cornigera from RNA-Seq data that was complemented with standard sequencing of mitochondrial DNA through primer walking. Our data confirm the sister species relationship of the two Sacoglossa and from the analysis of changes in mitochondrial-associated metabolism during starvation we speculate that kleptoplasts might aid in the rerouting or recycling of reducing power independent of, yet maybe improved by, photosynthesis.


Assuntos
Gastrópodes/genética , Gastrópodes/metabolismo , Genoma Mitocondrial , Animais , Cloroplastos/metabolismo , DNA Mitocondrial/genética , Gastrópodes/classificação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Fotossíntese , Plastídeos/metabolismo
18.
Nat Plants ; 3: 17066, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28504699

RESUMO

The redox-sensitive proteome (RSP) consists of protein thiols that undergo redox reactions, playing an important role in coordinating cellular processes. Here, we applied a large-scale phylogenomic reconstruction approach in the model diatom Phaeodactylum tricornutum to map the evolutionary origins of the eukaryotic RSP. The majority of P. tricornutum redox-sensitive cysteines (76%) is specific to eukaryotes, yet these are encoded in genes that are mostly of a prokaryotic origin (57%). Furthermore, we find a threefold enrichment in redox-sensitive cysteines in genes that were gained by endosymbiotic gene transfer during the primary plastid acquisition. The secondary endosymbiosis event coincides with frequent introduction of reactive cysteines into existing proteins. While the plastid acquisition imposed an increase in the production of reactive oxygen species, our results suggest that it was accompanied by significant expansion of the RSP, providing redox regulatory networks the ability to cope with fluctuating environmental conditions.


Assuntos
Diatomáceas/genética , Plastídeos/genética , Proteoma/genética , Simbiose , Evolução Biológica , Cisteína/química , Diatomáceas/química , Oxirredução , Proteoma/química
19.
Genome Biol Evol ; 7(9): 2602-7, 2015 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-26319575

RESUMO

Eukaryotic organelles depend on nuclear genes to perpetuate their biochemical integrity. This is true for mitochondria in all eukaryotes and plastids in plants and algae. Then how do kleptoplasts, plastids that are sequestered by some sacoglossan sea slugs, survive in the animals' digestive gland cells in the absence of the algal nucleus encoding the vast majority of organellar proteins? For almost two decades, lateral gene transfer (LGT) from algae to slugs appeared to offer a solution, but RNA-seq analysis, later supported by genome sequencing of slug DNA, failed to find any evidence for such LGT events. Yet, isolated reports continue to be published and are readily discussed by the popular press and social media, making the data on LGT and its support for kleptoplast longevity appear controversial. However, when we take a sober look at the methods used, we realize that caution is warranted in how the results are interpreted. There is no evidence that the evolution of kleptoplasty in sea slugs involves LGT events. Based on what we know about photosystem maintenance in embryophyte plastids, we assume kleptoplasts depend on nuclear genes. However, studies have shown that some isolated algal plastids are, by nature, more robust than those of land plants. The evolution of kleptoplasty in green sea slugs involves many promising and unexplored phenomena, but there is no evidence that any of these require the expression of slug genes of algal origin.


Assuntos
Evolução Molecular , Gastrópodes/genética , Plastídeos/genética , Animais , Transferência Genética Horizontal , Fotossíntese/genética
20.
J Eukaryot Microbiol ; 62(5): 694-700, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25847055

RESUMO

Proteins with membrane occupation and recognition nexus (MORN) motifs are associated with cell fission in apicomplexan parasites, chloroplast division in Arabidopsis and the motility of sperm cells. We found that ciliates are among those that encode the largest variety of MORN proteins. Tetrahymena thermophila expresses 129 MORN protein-encoding genes, some of which are specifically up-regulated during conjugation. A lipid-binding assay underpins the assumption that the predominant function of MORN motifs themselves is to confer the ability of lipid binding. The localisation of four MORN candidate proteins with similar characteristics highlights the functional diversity of this group especially in ciliates.


Assuntos
Motivos de Aminoácidos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Tetrahymena thermophila/química , Tetrahymena thermophila/metabolismo , Sequência de Aminoácidos , Metabolismo dos Lipídeos , Proteínas de Membrana/isolamento & purificação , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas de Protozoários/isolamento & purificação , Tetrahymena thermophila/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...