Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 10(3): e0118786, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25738989

RESUMO

The link between off-target anticholinergic effects of medications and acute cognitive impairment in older adults requires urgent investigation. We aimed to determine whether a relevant in vitro model may aid the identification of anticholinergic responses to drugs and the prediction of anticholinergic risk during polypharmacy. In this preliminary study we employed a co-culture of human-derived neurons and astrocytes (NT2.N/A) derived from the NT2 cell line. NT2.N/A cells possess much of the functionality of mature neurons and astrocytes, key cholinergic phenotypic markers and muscarinic acetylcholine receptors (mAChRs). The cholinergic response of NT2 astrocytes to the mAChR agonist oxotremorine was examined using the fluorescent dye fluo-4 to quantitate increases in intracellular calcium [Ca2+]i. Inhibition of this response by drugs classified as severe (dicycloverine, amitriptyline), moderate (cyclobenzaprine) and possible (cimetidine) on the Anticholinergic Cognitive Burden (ACB) scale, was examined after exposure to individual and pairs of compounds. Individually, dicycloverine had the most significant effect regarding inhibition of the astrocytic cholinergic response to oxotremorine, followed by amitriptyline then cyclobenzaprine and cimetidine, in agreement with the ACB scale. In combination, dicycloverine with cyclobenzaprine had the most significant effect, followed by dicycloverine with amitriptyline. The order of potency of the drugs in combination frequently disagreed with predicted ACB scores derived from summation of the individual drug scores, suggesting current scales may underestimate the effect of polypharmacy. Overall, this NT2.N/A model may be appropriate for further investigation of adverse anticholinergic effects of multiple medications, in order to inform clinical choices of suitable drug use in the elderly.


Assuntos
Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Antagonistas Colinérgicos/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Amitriptilina/farmacologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Colinérgicos/farmacologia , Diciclomina/farmacologia , Relação Dose-Resposta a Droga , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Oxotremorina/farmacologia , Receptores Muscarínicos/metabolismo , Tubulina (Proteína)/metabolismo
2.
PLoS One ; 8(3): e58822, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23527032

RESUMO

Mood stabilising drugs such as lithium (LiCl) and valproic acid (VPA) are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO) term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4), neurons (Neurofilament M), astrocytes (GFAP) or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Cloreto de Lítio/farmacologia , Neurogênese/efeitos dos fármacos , Fenótipo , Ácido Valproico/farmacologia , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Anotação de Sequência Molecular , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Reprodutibilidade dos Testes , Antígenos Embrionários Estágio-Específicos/genética , Antígenos Embrionários Estágio-Específicos/metabolismo
3.
Altern Lab Anim ; 41(6): 503-11, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24512234

RESUMO

Recent changes to the legislation on chemicals and cosmetics testing call for a change in the paradigm regarding the current 'whole animal' approach for identifying chemical hazards, including the assessment of potential neurotoxins. Accordingly, since 2004, we have worked on the development of the integrated co-culture of post-mitotic, human-derived neurons and astrocytes (NT2.N/A), for use as an in vitro functional central nervous system (CNS) model. We have used it successfully to investigate indicators of neurotoxicity. For this purpose, we used NT2.N/A cells to examine the effects of acute exposure to a range of test chemicals on the cellular release of brain-derived neurotrophic factor (BDNF). It was demonstrated that the release of this protective neurotrophin into the culture medium (above that of control levels) occurred consistently in response to sub-cytotoxic levels of known neurotoxic, but not non-neurotoxic, chemicals. These increases in BDNF release were quantifiable, statistically significant, and occurred at concentrations below those at which cell death was measureable, which potentially indicates specific neurotoxicity, as opposed to general cytotoxicity. The fact that the BDNF immunoassay is non-invasive, and that NT2.N/A cells retain their functionality for a period of months, may make this system useful for repeated-dose toxicity testing, which is of particular relevance to cosmetics testing without the use of laboratory animals. In addition, the production of NT2.N/A cells without the use of animal products, such as fetal bovine serum, is being explored, to produce a fully-humanised cellular model.


Assuntos
Alternativas aos Testes com Animais , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Sistema Nervoso Central/efeitos dos fármacos , Animais , Diferenciação Celular , Sistema Nervoso Central/metabolismo , Ensaio de Imunoadsorção Enzimática
4.
PLoS One ; 7(8): e42768, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22880100

RESUMO

Many pesticides are used increasingly in combinations during crop protection and their stability ensures the presence of such combinations in foodstuffs. The effects of three fungicides, pyrimethanil, cyprodinil and fludioxonil, were investigated together and separately on U251 and SH-SY5Y cells, which can be representative of human CNS glial and neuronal cells respectively. Over 48h, all three agents showed significant reductions in cellular ATP, at concentrations that were more than tenfold lower than those which significantly impaired cellular viability. The effects on energy metabolism were reflected in their marked toxic effects on mitochondrial membrane potential. In addition, evidence of oxidative stress was seen in terms of a fall in cellular thiols coupled with increases in the expression of enzymes associated with reactive species formation, such as GSH peroxidase and superoxide dismutase. The glial cell line showed significant responsiveness to the toxin challenge in terms of changes in antioxidant gene expression, although the neuronal SH-SY5Y line exhibited greater vulnerability to toxicity, which was reflected in significant increases in caspase-3 expression, which is indicative of the initiation of apoptosis. Cyprodinil was the most toxic agent individually, although oxidative stress-related enzyme gene expression increases appeared to demonstrate some degree of synergy in the presence of the combination of agents. This report suggests that the impact of some pesticides, both individually and in combinations, merits further study in terms of their impact on human cellular health.


Assuntos
Neuroglia/efeitos dos fármacos , Neuroglia/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Praguicidas/toxicidade , Trifosfato de Adenosina/metabolismo , Benzimidazóis/metabolismo , Carbocianinas/metabolismo , Caspase 3/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dioxóis/toxicidade , Metabolismo Energético/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Glutationa/metabolismo , Humanos , Inativação Metabólica , Concentração Inibidora 50 , Neurônios/enzimologia , Reação em Cadeia da Polimerase , Pirimidinas/toxicidade , Pirróis/toxicidade
5.
Basic Clin Pharmacol Toxicol ; 102(1): 25-9, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17973901

RESUMO

The effects of the alpha-diketone derivatives 2,3- and 3,4-hexanediones were investigated in three non-neuronal cell lines (MCF7, HepG(2) and CaCo-2) as well as in the neuroblastoma line, SH-SY5Y. The MTT reduction assay was employed to determine the necrotic effects of the alpha-diketones and the neurotoxin 2,5-hexanedione over 4, 24 and 48 hr exposures. Flow cytometry was also used to study the effects of the three isomers on the cell cycle of the SH-SY5Y line only. With 2,5-hexanedione, the mean MTT IC(50) decreased more than 10-fold from 4 to 48 hr. The toxicities of both alpha-diketones were similar, with a more than 18-fold increase in sensitivity of the SH-SY5Y at 24 hr compared to that of 4 hr. With flow cytometry at 48 hr, SH-SY5Y apoptosis with 2,5-hexanedione rose throughout the concentration range evaluated (0-30 mM) while 2,3- and 3,4-hexanediones showed apoptosis over the concentration range 1-1.6 mM, with 3,4-hexanedione being the more potent compared to the 2,3-isomer. At 1.6 mM nearly all the cells had entered apoptosis in the presence of the 3,4-isomer, (94.9 +/- 1.4%) but only 57.5 +/- 4.1% of the 2,3-isomer-treated cells had reached that stage. The 2,3- and 3,4-isomers in diets alone may not pose a serious threat to human health. Further studies may be necessary to evaluate the effects of other dietary components on their toxicity. These alpha-diketones also display a degree of toxic selectivity towards neuroblastoma cells, which may have therapeutic implications.


Assuntos
Apoptose/efeitos dos fármacos , Hexanonas/farmacologia , Neuroblastoma/tratamento farmacológico , Neurônios/efeitos dos fármacos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral/efeitos dos fármacos , Linhagem Celular Tumoral/metabolismo , Linhagem Celular Tumoral/patologia , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/metabolismo , Neoplasias do Colo/patologia , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Citometria de Fluxo , Formazans/metabolismo , Humanos , Isomerismo , Neuroblastoma/metabolismo , Neuroblastoma/patologia , Neurônios/metabolismo , Neurônios/patologia , Sais de Tetrazólio/metabolismo
6.
Environ Toxicol Pharmacol ; 22(3): 249-54, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21783717

RESUMO

The metabolite 2,5-hexanedione (HD) is the cause of neurotoxicity linked with chronic n-hexane exposure. Acute exposure to high levels of 2,5-HD, have also shown toxic effects in neuronal cells and non-neuronal cells. Isomers of 2,5-HD, 2,3- and 3,4-HD, added to foodstuffs, are reported to be non-toxic. The acute cytotoxic effects of 2,5-, 2,3- and 3,4-HD were evaluated in neural (NT2.N, SK-N-SH), astrocytic (CCF-STTG1) and non-neural (NT2.D1) cell lines. All the cell lines were highly resistant to 2,5-HD (34-426mM) at 4-h exposure, although sensitivity was greatest with NT2.D1, then SK-N-SH, NT2.N and finally the CCF-STTG1 line. At 24-h exposure, cell vulnerability increased 5-10-fold. The NT2.D1 cells were again the most sensitive, followed by NT2.N, SK-N-SH and then the CCF-STTG1 cells. 2,3- and 3,4-HD (8-84mM), were significantly more toxic towards all four cell lines compared with 2,5-HD, after 4-h exposure. After 24-h exposure there was a 12-fold increase in inhibition of MTT turnover in the SK-N-SH cells and a 4-fold increase in the CCF-STTG1 cells, compared with 2,5-HD exposure. 2,3- and 3,4-HD, were significantly less toxic to the NT2.N cells than the SK-N-SH cells after 24-h exposure to the compounds, demonstrating a differing toxin vulnerability between these neural and neuroblastoma cell lines. This study indicates that these non-neuronal and neuronal cells are acutely resistant to 2,5-HD cytotoxicity, whilst the previously unreported sensitivity of all four cell lines to the 2,3- and 3,4- isomers of HD to has been shown to be significantly greater than that of 2,5-HD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...