Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Struct Mol Biol ; 30(5): 640-649, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37106137

RESUMO

The Swi2/Snf2 family transcription regulator Modifier of Transcription 1 (Mot1) uses adenosine triphosphate (ATP) to dissociate and reallocate the TATA box-binding protein (TBP) from and between promoters. To reveal how Mot1 removes TBP from TATA box DNA, we determined cryogenic electron microscopy structures that capture different states of the remodeling reaction. The resulting molecular video reveals how Mot1 dissociates TBP in a process that, intriguingly, does not require DNA groove tracking. Instead, the motor grips DNA in the presence of ATP and swings back after ATP hydrolysis, moving TBP to a thermodynamically less stable position on DNA. Dislodged TBP is trapped by a chaperone element that blocks TBP's DNA binding site. Our results show how Swi2/Snf2 proteins can remodel protein-DNA complexes through DNA bending without processive DNA tracking and reveal mechanistic similarities to RNA gripping DEAD box helicases and RIG-I-like immune sensors.


Assuntos
Proteínas de Saccharomyces cerevisiae , Fatores Associados à Proteína de Ligação a TATA , Adenosina Trifosfatases/metabolismo , Fatores de Transcrição/metabolismo , TATA Box , Proteína de Ligação a TATA-Box/química , Proteínas de Saccharomyces cerevisiae/metabolismo , DNA/química , Trifosfato de Adenosina/metabolismo , Fatores Associados à Proteína de Ligação a TATA/química
2.
Sci Adv ; 8(49): eadd3189, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36490333

RESUMO

The nucleosomal landscape of chromatin depends on the concerted action of chromatin remodelers. The INO80 remodeler specifically places nucleosomes at the boundary of gene regulatory elements, which is proposed to be the result of an ATP-dependent nucleosome sliding activity that is regulated by extranucleosomal DNA features. Here, we use cryo-electron microscopy and functional assays to reveal how INO80 binds and is regulated by extranucleosomal DNA. Structures of the regulatory A-module bound to DNA clarify the mechanism of linker DNA binding. The A-module is connected to the motor unit via an HSA/post-HSA lever element to chemomechanically couple the motor and linker DNA sensing. Two notable sites of curved DNA recognition by coordinated action of the four actin/actin-related proteins and the motor suggest how sliding by INO80 can be regulated by extranucleosomal DNA features. Last, the structures clarify the recruitment of YY1/Ies4 subunits and reveal deep architectural similarities between the regulatory modules of INO80 and SWI/SNF complexes.

3.
Elife ; 82019 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-31112132

RESUMO

Kinetochores are macromolecular protein complexes at centromeres that ensure accurate chromosome segregation by attaching chromosomes to spindle microtubules and integrating safeguard mechanisms. The inner kinetochore is assembled on CENP-A nucleosomes and has been implicated in establishing a kinetochore-associated pool of Aurora B kinase, a chromosomal passenger complex (CPC) subunit, which is essential for chromosome biorientation. By performing crosslink-guided in vitro reconstitution of budding yeast kinetochore complexes we showed that the Ame1/Okp1CENP-U/Q heterodimer, which forms the COMA complex with Ctf19/Mcm21CENP-P/O, selectively bound Cse4CENP-A nucleosomes through the Cse4 N-terminus. The Sli15/Ipl1INCENP/Aurora-B core-CPC interacted with COMA in vitro through the Ctf19 C-terminus whose deletion affected chromosome segregation fidelity in Sli15 wild-type cells. Tethering Sli15 to Ame1/Okp1 rescued synthetic lethality upon Ctf19 depletion in a Sli15 centromere-targeting deficient mutant. This study shows molecular characteristics of the point-centromere kinetochore architecture and suggests a role for the Ctf19 C-terminus in mediating CPC-binding and accurate chromosome segregation.


Assuntos
Cinetocoros/química , Mapas de Interação de Proteínas , Proteínas de Saccharomyces cerevisiae/análise , Saccharomycetales/química , Ligação Proteica
4.
Elife ; 72018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-30289385

RESUMO

Swi2/Snf2 ATPases remodel protein:DNA complexes in all of the fundamental chromosome-associated processes. The single-subunit remodeler Mot1 dissociates TATA box-binding protein (TBP):DNA complexes and provides a simple model for obtaining structural insights into the action of Swi2/Snf2 ATPases. Previously we reported how the N-terminal domain of Mot1 binds TBP, NC2 and DNA, but the location of the C-terminal ATPase domain remained unclear (Butryn et al., 2015). Here, we report the crystal structure of the near full-length Mot1 from Chaetomium thermophilum. Our data show that Mot1 adopts a ring like structure with a catalytically inactive resting state of the ATPase. Biochemical analysis suggests that TBP binding switches Mot1 into an ATP hydrolysis-competent conformation. Combined with our previous results, these data significantly improve the structural model for the complete Mot1:TBP:DNA complex and suggest a general mechanism for Mot1 action.


Assuntos
Chaetomium/metabolismo , Proteínas Cromossômicas não Histona/química , Proteínas Fúngicas/química , Fatores de Transcrição/química , Adenosina Trifosfatases/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografia por Raios X , DNA Fúngico/metabolismo , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Mutação/genética , Domínios Proteicos , Proteína de Ligação a TATA-Box/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...