Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Antimicrob Agents Chemother ; : e0018124, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742896

RESUMO

Ivermectin (IVM) could be used for malaria control as treated individuals are lethal to blood-feeding Anopheles, resulting in reduced transmission. Tafenoquine (TQ) is used to clear the liver reservoir of Plasmodium vivax and as a prophylactic treatment in high-risk populations. It has been suggested to use ivermectin and tafenoquine in combination, but the safety of these drugs in combination has not been evaluated. Early derivatives of 8-aminoquinolones (8-AQ) were neurotoxic, and ivermectin is an inhibitor of the P-glycoprotein (P-gp) blood brain barrier (BBB) transporter. Thus, there is concern that co-administration of these drugs could be neurotoxic. This study aimed to evaluate the safety and pharmacokinetic interaction of tafenoquine, ivermectin, and chloroquine (CQ) in Rhesus macaques. No clinical, biochemistry, or hematological outcomes of concern were observed. The Cambridge Neuropsychological Test Automated Battery (CANTAB) was employed to assess potential neurological deficits following drug administration. Some impairment was observed with tafenoquine alone and in the same monkeys with subsequent co-administrations. Co-administration of chloroquine and tafenoquine resulted in increased plasma exposure to tafenoquine. Urine concentrations of the 5,6 orthoquinone TQ metabolite were increased with co-administration of tafenoquine and ivermectin. There was an increase in ivermectin plasma exposure when co-administered with chloroquine. No interaction of tafenoquine on ivermectin was observed in vitro. Chloroquine and trace levels of ivermectin, but not tafenoquine, were observed in the cerebrospinal fluid. The 3''-O-demethyl ivermectin metabolite was observed in macaque plasma but not in urine or cerebrospinal fluid. Overall, the combination of ivermectin, tafenoquine, and chloroquine did not have clinical, neurological, or pharmacological interactions of concern in macaques; therefore, this combination could be considered for evaluation in human trials.

2.
Nat Commun ; 15(1): 2499, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509066

RESUMO

Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD), yet strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we use simulations, a true IBD inference algorithm, and empirical data sets from different malaria transmission settings to investigate the extent of this bias and explore potential correction strategies. We analyze whole genome sequence data generated from 640 new and 3089 publicly available Plasmodium falciparum clinical isolates. We demonstrate that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discover that the removal of IBD peak regions partially restores the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness and extent of inbreeding. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.


Assuntos
Antimaláricos , Malária Falciparum , Humanos , Plasmodium falciparum , Malária Falciparum/parasitologia , Viés de Seleção , Antimaláricos/farmacologia , Demografia
3.
bioRxiv ; 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37502843

RESUMO

Malaria genomic surveillance often estimates parasite genetic relatedness using metrics such as Identity-By-Decent (IBD). Yet, strong positive selection stemming from antimalarial drug resistance or other interventions may bias IBD-based estimates. In this study, we utilized simulations, a true IBD inference algorithm, and empirical datasets from different malaria transmission settings to investigate the extent of such bias and explore potential correction strategies. We analyzed whole genome sequence data generated from 640 new and 4,026 publicly available Plasmodium falciparum clinical isolates. Our findings demonstrated that positive selection distorts IBD distributions, leading to underestimated effective population size and blurred population structure. Additionally, we discovered that the removal of IBD peak regions partially restored the accuracy of IBD-based inferences, with this effect contingent on the population's background genetic relatedness. Consequently, we advocate for selection correction for parasite populations undergoing strong, recent positive selection, particularly in high malaria transmission settings.

4.
Proc Natl Acad Sci U S A ; 120(24): e2216522120, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37279274

RESUMO

During infections with the malaria parasites Plasmodium vivax, patients exhibit rhythmic fevers every 48 h. These fever cycles correspond with the time the parasites take to traverse the intraerythrocytic cycle (IEC). In other Plasmodium species that infect either humans or mice, the IEC is likely guided by a parasite-intrinsic clock [Rijo-Ferreiraet al., Science 368, 746-753 (2020); Smith et al., Science 368, 754-759 (2020)], suggesting that intrinsic clock mechanisms may be a fundamental feature of malaria parasites. Moreover, because Plasmodium cycle times are multiples of 24 h, the IECs may be coordinated with the host circadian clock(s). Such coordination could explain the synchronization of the parasite population in the host and enable alignment of IEC and circadian cycle phases. We utilized an ex vivo culture of whole blood from patients infected with P. vivax to examine the dynamics of the host circadian transcriptome and the parasite IEC transcriptome. Transcriptome dynamics revealed that the phases of the host circadian cycle and the parasite IEC are correlated across multiple patients, showing that the cycles are phase coupled. In mouse model systems, host-parasite cycle coupling appears to provide a selective advantage for the parasite. Thus, understanding how host and parasite cycles are coupled in humans could enable antimalarial therapies that disrupt this coupling.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium , Humanos , Camundongos , Animais , Interações Hospedeiro-Parasita , Malária/parasitologia , Plasmodium/genética
5.
Malar J ; 22(1): 52, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782196

RESUMO

BACKGROUND: Estimating malaria risk associated with work locations and travel across a region provides local health officials with information useful to mitigate possible transmission paths of malaria as well as understand the risk of exposure for local populations. This study investigates malaria exposure risk by analysing the spatial pattern of malaria cases (primarily Plasmodium vivax) in Ubon Ratchathani and Sisaket provinces of Thailand, using an ecological niche model and machine learning to estimate the species distribution of P. vivax malaria and compare the resulting niche areas with occupation type, work locations, and work-related travel routes. METHODS: A maximum entropy model was trained to estimate the distribution of P. vivax malaria for a period between January 2019 and April 2020, capturing estimated malaria occurrence for these provinces. A random simulation workflow was developed to make region-based case data usable for the machine learning approach. This workflow was used to generate a probability surface for the ecological niche regions. The resulting niche regions were analysed by occupation type, home and work locations, and work-related travel routes to determine the relationship between these variables and malaria occurrence. A one-way analysis of variance (ANOVA) test was used to understand the relationship between predicted malaria occurrence and occupation type. RESULTS: The MaxEnt (full name) model indicated a higher occurrence of P. vivax malaria in forested areas especially along the Thailand-Cambodia border. The ANOVA results showed a statistically significant difference between average malaria risk values predicted from the ecological niche model for rubber plantation workers and farmers, the two main occupation groups in the study. The rubber plantation workers were found to be at higher risk of exposure to malaria than farmers in Ubon Ratchathani and Sisaket provinces of Thailand. CONCLUSION: The results from this study point to occupation-related factors such as work location and the routes travelled to work, being risk factors in malaria occurrence and possible contributors to transmission among local populations.


Assuntos
Malária Falciparum , Malária Vivax , Malária , Humanos , Malária Vivax/epidemiologia , Tailândia/epidemiologia , Entropia , Borracha , Malária/epidemiologia , Plasmodium vivax , Viagem , Fatores de Risco , Malária Falciparum/epidemiologia
6.
BMC Infect Dis ; 22(1): 695, 2022 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-35978294

RESUMO

BACKGROUND: ESKAPEE pathogens Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Escherichia coli are multi-drug resistant (MDR) bacteria that present increasing treatment challenges for healthcare institutions and public health worldwide. METHODS: 431 MDR ESKAPEE pathogens were collected from Queen Sirikit Naval Hospital, Chonburi, Thailand between 2017 and 2018. Species identification and antimicrobial resistance (AMR) phenotype were determined following CLSI and EUCAST guidelines on the BD Phoenix System. Molecular identification of antibiotic resistant genes was performed by polymerase chain reaction (PCR), real-time PCR assays, and whole genome sequencing (WGS). RESULTS: Of the 431 MDR isolates collected, 1.2% were E. faecium, 5.8% were S. aureus, 23.7% were K. pneumoniae, 22.5% were A. baumannii, 4.6% were P. aeruginosa, 0.9% were Enterobacter spp., and 41.3% were E. coli. Of the 401 Gram-negative MDR isolates, 51% were carbapenem resistant, 45% were ESBL producers only, 2% were colistin resistance and ESBLs producers (2%), and 2% were non-ESBLs producers. The most prevalent carbapenemase genes were blaOXA-23 (23%), which was only identified in A. baumannii, followed by blaNDM (17%), and blaOXA-48-like (13%). Beta-lactamase genes detected included blaTEM, blaSHV, blaOXA, blaCTX-M, blaDHA, blaCMY, blaPER and blaVEB. Seven E. coli and K. pneumoniae isolates showed resistance to colistin and carried mcr-1 or mcr-3, with 2 E. coli strains carrying both genes. Among 30 Gram-positive MDR ESKAPEE, all VRE isolates carried the vanA gene (100%) and 84% S. aureus isolates carried the mecA gene. CONCLUSIONS: This report highlights the prevalence of AMR among clinical ESKAPEE pathogens in eastern Thailand. E. coli was the most common MDR pathogen collected, followed by K. pneumoniae, and A. baumannii. Carbapenem-resistant Enterobacteriaceae (CRE) and extended spectrum beta-lactamases (ESBLs) producers were the most common resistance profiles. The co-occurrence of mcr-1 and mcr-3 in 2 E. coli strains, which did not affect the level of colistin resistance, is also reported. The participation of global stakeholders and surveillance of MDR remain essential for the control and management of MDR ESKAPEE pathogens.


Assuntos
Colistina , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli , Proteínas de Escherichia coli/genética , Klebsiella pneumoniae , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa , Staphylococcus aureus , Tailândia/epidemiologia , beta-Lactamases/genética
7.
Trop Med Infect Dis ; 7(8)2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35893653

RESUMO

With the emergence of SARS-CoV-2, healthcare systems not only had to address the pressing clinical needs of the COVID-19 pandemic but anticipate the effect on and of other conditions and diseases. This was of particular concern in areas of the world endemic with malaria, a disease which takes hundreds of thousands of lives each year. This case report from Thailand describes a 25-year-old man diagnosed with Plasmodium vivax, who was then found to be co-infected with COVID-19. Both conditions can have overlapping acute febrile illness symptoms which may delay or complicate diagnoses. He had no prior history of malaria and had received two vaccinations against COVID-19. His clinical course was mild with no pulmonary complications or oxygen requirement, and he responded well to treatments for both conditions. Three months after cure, he again contracted COVID-19 but did not experience any P. vivax relapse. Review of the available literature produced less than 10 publications describing co-infections with P. vivax and COVID-19; nonetheless, in endemic areas, vigilance for both diseases should continue, as co-infections could significantly alter the course of clinical management and prognosis as well as affect the healthcare staff caring for these patients.

8.
Malar J ; 21(1): 142, 2022 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-35524255

RESUMO

BACKGROUND: While human cases of Plasmodium knowlesi are now regularly recognized in Southeast Asia, infections with other simian malaria species, such as Plasmodium cynomolgi, are still rare. There has been a handful of clinical cases described, all from Malaysia, and retrospective studies of archived blood samples in Thailand and Cambodia have discovered the presence P. cynomolgi in isolates using polymerase chain reaction (PCR) assays. CASE PRESENTATION: In Thailand, an ongoing malaria surveillance study enrolled two patients from Yala Province diagnosed with Plasmodium vivax by blood smear, but who were subsequently found to be negative by PCR. Expanded PCR testing of these isolates detected mono-infection with P. cynomolgi, the first time this has been reported in Thailand. Upon re-testing of 60 isolates collected from Yala, one other case was identified, a co-infection of P. cynomolgi and P. vivax. The clinical course for all three was relatively mild, with symptoms commonly seen in malaria: fever, chills and headaches. All infections were cured with a course of chloroquine and primaquine. CONCLUSION: In malaria-endemic areas with macaque populations, cases of simian malaria in humans are being reported at an increasing rate, although still comprise a very small percentage of total cases. Plasmodium cynomolgi and P. vivax are challenging to distinguish by blood smear; therefore, PCR can be employed when infections are suspected or as part of systematic malaria surveillance. As Thai MoPH policy schedules regular follow-up visits after each malaria infection, identifying those with P. cynomolgi will allow for monitoring of treatment efficacy, although at this time P. cynomolgi appears to have an uncomplicated clinical course and good response to commonly used anti-malarials.


Assuntos
Malária Vivax , Malária , Parasitos , Plasmodium cynomolgi , Plasmodium knowlesi , Animais , Humanos , Malária/diagnóstico , Malária/tratamento farmacológico , Malária/epidemiologia , Malária Vivax/diagnóstico , Malária Vivax/tratamento farmacológico , Malária Vivax/epidemiologia , Estudos Retrospectivos , Tailândia/epidemiologia
9.
Malar J ; 21(1): 130, 2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35459163

RESUMO

BACKGROUND: The rise in Plasmodium falciparum resistance to dihydroartemisinin-piperaquine (DHA-PPQ) treatment has been documented in the Greater Mekong Subregion with associations with mutations in the P. falciparum chloroquine resistance transporter (pfcrt) and plasmepsin 2 (pfpm2) genes. However, it is unclear whether other genes also play a role with PPQ resistance, such as the E415G mutation in the exonuclease (pfexo) gene. The aim of this study was to investigate the role of this mutation in PPQ resistance by generating transgenic parasites expressing the pfexo-E415G mutant allele. METHODS: Transgenic parasite clones carrying the E415G mutation in PfEXO of the B5 isolate were derived by CRISPR-Cas9 gene editing and verified using PCR and gene sequencing. Polymorphisms of pfkelch-13, pfcrt, and pfexo were examined by PCR while the copy number variations of pfpm2 were examined by both relative quantitative real-time PCR and the duplication breakpoint assay. Drug sensitivity against a panel of antimalarials, the ring-stage survival assay (RSA), the PPQ survival assay (PSA), and bimodal dose-response curves were used to evaluate antimalarial susceptibility. RESULTS: The transgenic line, B5-rexo-E415G-B8, was successfully generated. The PPQ-IC90, %PPQ survival, and the bimodal dose-response clearly showed that E415G mutation in PfEXO of B5 isolate remained fully susceptible to PPQ. Furthermore, growth assays demonstrated that the engineered parasites grew slightly faster than the unmodified parental isolates whereas P. falciparum isolates harbouring pfkelch-13, pfcrt, and pfexo mutations with multiple copies of pfpm2 grew much more slowly. CONCLUSIONS: Insertion of the E415G mutation in PfEXO did not lead to increased PPQ-IC90 and %PPQ survival, suggesting that this mutation alone may not be associated with PPQ resistance, but could still be an important marker if used in conjunction with other markers for monitoring PPQ-resistant parasites. The results also highlight the importance of monitoring and evaluating suspected genetic mutations with regard to parasite fitness and resistance.


Assuntos
Antimaláricos , Malária Falciparum , Parasitos , Quinolinas , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Cloroquina/farmacologia , Cloroquina/uso terapêutico , Variações do Número de Cópias de DNA , Resistência a Medicamentos/genética , Exonucleases/genética , Exonucleases/farmacologia , Exonucleases/uso terapêutico , Malária Falciparum/parasitologia , Proteínas de Membrana Transportadoras/genética , Mutação , Fosfodiesterase I/genética , Fosfodiesterase I/farmacologia , Piperazinas , Plasmodium falciparum , Mutação Puntual , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Quinolinas/farmacologia , Quinolinas/uso terapêutico
10.
Mil Med ; 2022 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35134989

RESUMO

INTRODUCTION: We established a murine wound infection model with doxycycline treatment against multidrug-resistant Acinetobacter baumannii (AB5075) in Institute of Cancer Research (ICR) outbred mice. METHODS: Using three groups of neutropenic ICR mice, two full-thickness dorsal dermal wounds (6 mm diameter) were made on each mouse. In two groups, wounds were inoculated with 7.0 × 104 colony-forming units of AB5075. Of these two groups, one received a 6-day regimen of doxycycline while the other was sham treated with phosphate-buffered saline as placebo control. Another uninfected/untreated group served as a control. Wound closure, clinical symptoms, bacterial burden in wound beds and organs, and wound histology were investigated. RESULTS: Doxycycline-treated wounds completely healed by day 21, but untreated, infected wounds failed to heal. Compared to controls, wound infections without treatment resulted in significant reductions in body weight and higher bacterial loads in wound beds, lung, liver, and spleen by day 7. Histological evaluation of wounds on day 21 revealed ulcerated epidermis, muscle necrosis, and bacterial presence in untreated wounds, while wounds treated with doxycycline presented intact epidermis. CONCLUSIONS: Compared to the previously developed BALB/c dermal wound model, this study demonstrates that the mouse strain selected impacts wound severity and resolution. Furthermore, this mouse model accommodates two dorsal wounds rather than only one. These variations offer investigators increased versatility when designing future studies of wound infection. In conclusion, ICR mice are a viable option as a model of dermal wound infection. They accommodate two simultaneous dorsal wounds, and upon infection, these wounds follow a different pattern of resolution compared to BALB/c mice.

11.
PLoS Negl Trop Dis ; 16(2): e0010174, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35176015

RESUMO

BACKGROUND: The introduction of novel short course treatment regimens for the radical cure of Plasmodium vivax requires reliable point-of-care diagnosis that can identify glucose-6-phosphate dehydrogenase (G6PD) deficient individuals. While deficient males can be identified using a qualitative diagnostic test, the genetic make-up of females requires a quantitative measurement. SD Biosensor (Republic of Korea) has developed a handheld quantitative G6PD diagnostic (STANDARD G6PD test), that has approximately 90% accuracy in field studies for identifying individuals with intermediate or severe deficiency. The device can only be considered for routine care if precision of the assay is high. METHODS AND FINDINGS: Commercial lyophilised controls (ACS Analytics, USA) with high, intermediate, and low G6PD activities were assessed 20 times on 10 Biosensor devices and compared to spectrophotometry (Pointe Scientific, USA). Each device was then dispatched to one of 10 different laboratories with a standard set of the controls. Each control was tested 40 times at each laboratory by a single user and compared to spectrophotometry results. When tested at one site, the mean coefficient of variation (CV) was 0.111, 0.172 and 0.260 for high, intermediate, and low controls across all devices respectively; combined G6PD Biosensor readings correlated well with spectrophotometry (rs = 0.859, p<0.001). When tested in different laboratories, correlation was lower (rs = 0.604, p<0.001) and G6PD activity determined by Biosensor for the low and intermediate controls overlapped. The use of lyophilised human blood samples rather than fresh blood may have affected these findings. Biosensor G6PD readings between sites did not differ significantly (p = 0.436), whereas spectrophotometry readings differed markedly between sites (p<0.001). CONCLUSIONS: Repeatability and inter-laboratory reproducibility of the Biosensor were good; though the device did not reliably discriminate between intermediate and low G6PD activities of the lyophilized specimens. Clinical studies are now required to assess the devices performance in practice.


Assuntos
Técnicas Biossensoriais/normas , Deficiência de Glucosefosfato Desidrogenase/diagnóstico , Glucosefosfato Desidrogenase/sangue , Feminino , Liofilização , Deficiência de Glucosefosfato Desidrogenase/sangue , Humanos , Testes Imediatos/normas , Reprodutibilidade dos Testes , Espectrofotometria
12.
Antimicrob Agents Chemother ; 66(3): e0182121, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-34978892

RESUMO

The active metabolites of primaquine, in particular 5-hydroxyprimaquine, likely responsible for the clearance of dormant hypnozoites, are produced through the hepatic CYP450 2D6 (CYP2D6) enzymatic pathway. With the inherent instability of 5-hydroxyprimaquine, a stable surrogate, 5,6-orthoquinone, can now be detected and measured in the urine as part of primaquine pharmacokinetic studies. This study performed CYP450 2D6 genotyping and primaquine pharmacokinetic testing, to include urine 5,6-orthoquinone, in 27 healthy adult Cambodians, as a preliminary step to prepare for future clinical studies assessing primaquine efficacy for Plasmodium vivax infections. The CYP2D6 *10 reduced activity allele was found in 57% of volunteers, and the CYP2D6 genotypes were dominated by *1/*10 (33%) and *10/*10 (30%). Predicted phenotypes were evenly split between Normal Metabolizer (NM) and Intermediate Metabolizer (IM) except for one volunteer with a gene duplication and unclear phenotype, classifying as either IM or NM. Median plasma primaquine (PQ) area under the curve (AUC) was lower in the NM group (460 h*ng/mL) compared to the IM group (561 h*ng/mL), although not statistically significant. Similar to what has been found in the US study, no 5,6-orthoquinone was detected in the plasma. The urine creatinine-corrected 5,6-orthoquinone AUC in the NM group was almost three times higher than in the IM group, with peak measurements (Tmax) at 4 h. Although there is variation among individuals, future studies examining the relationship between the levels of urine 5,6-orthoquinone and primaquine radical cure efficacy could result in a metabolism biomarker predictive of radical cure.


Assuntos
Antimaláricos , Malária Vivax , Adulto , Antimaláricos/farmacocinética , Antimaláricos/uso terapêutico , Povo Asiático , Citocromo P-450 CYP2D6/genética , Citocromo P-450 CYP2D6/metabolismo , Humanos , Malária Vivax/tratamento farmacológico , Plasmodium vivax/genética , Primaquina/análogos & derivados , Primaquina/farmacocinética , Primaquina/uso terapêutico
13.
Mil Med ; 2022 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-34986242

RESUMO

INTRODUCTION: The effective dual antibiotics ceftriaxone (CRO) and azithromycin (AZM) have successfully treated Neisseria gonorrhoeae (GC) infection, however, the CRO- and AZM-resistant strains have been sporadically detected globally and in Thailand. Furthermore, there are no currently antimicrobial susceptibility profiles of the GC isolates obtained from soldiers reported in Thailand. Hence, this is the first study to describe the antimicrobial susceptibility profiles of GC isolates obtained from predominately soldiers who seeking care at Military Camp Hospitals, in Thailand from 2014 to 2020. MATERIALS AND METHODS: A total of 624 symptomatic gonococcal samples were received from 10 military hospitals during 2014-2020. They were collected from urethral swabs and inoculated into selective media. The suspected GC isolates were subcultured and presumptively identified using conventional microbiology techniques. Antimicrobial susceptibility test was performed by Etest to determine minimal inhibitory concentration (µg/mL) against AZM, benzylpenicillin, cefepime, cefixime, ceftriaxone (CRO), ciprofloxacin, spectinomycin, and tetracycline using the criteria outlined in the Clinical and Laboratory Standards Institute guidelines. This study was approved by Institutional Review Board, Royal Thai Army Medical Department under protocol number S036b/56 and Walter Reed Army Institute of Research, and Silver Spring, MD under protocol number WR #2039. RESULTS: A total of 624 samples were collected from symptomatic gonococcal infectious patients with 91.5% (571/624) of samples obtained from soldiers. Of those, 78% (488/624) were identified as GC and 92% (449/488) of them were isolated from soldiers. All GC samples collected were susceptible to CRO (first-line treatment) with only one GC isolate identified as non-susceptible to cefepime and three isolates identified as non-susceptible to AZM. CONCLUSION: The recommended dual treatment of GC infections with CRO and AZM is currently an effective empirical treatment for patients who are seeking care at military hospitals in Thailand. Nevertheless, cefepime is a fourth-generation cephalosporin with documented high activity against GC strains equal to other "third-generation" cephalosporins such as CRO. Due to the active duty of military personnel, they concerned about the confidentiality and frequently seek treatment at civilian clinics. Additionally, due to the availability of antibiotics over the counter in Thailand, many choose the option to self-medicate without a physician's prescription. These could be subsequently driven the gradual increase of multidrug-resistant gonococcal strains throughout the country. Thus, the GC surveillance would be needed for further Force Health Protection and public health authorities in response to the drug-resistant GC threats.

14.
Malar J ; 20(1): 458, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34876133

RESUMO

BACKGROUND: In April 2017, the Thai Ministry of Public Health (MoPH) was alerted to a potential malaria outbreak among civilians and military personnel in Sisaket Province, a highly forested area bordering Cambodia. The objective of this study was to present findings from the joint civilian-military outbreak response. METHODS: A mixed-methods approach was used to assess risk factors among cases reported during the 2017 Sisaket malaria outbreak. Routine malaria surveillance data from January 2013 to March 2018 obtained from public and military medical reporting systems and key informant interviews (KIIs) (n = 72) were used to develop hypotheses about potential factors contributing to the outbreak. Joint civilian-military response activities included entomological surveys, mass screen and treat (MSAT) and vector control campaigns, and scale-up of the "1-3-7" reactive case detection approach among civilians alongside a pilot "1-3-7" study conducted by the Royal Thai Army (RTA). RESULTS: Between May-July 2017, the monthly number of MoPH-reported cases surpassed the epidemic threshold. Outbreak cases detected through the MoPH mainly consisted of Thai males (87%), working as rubber tappers (62%) or military/border police (15%), and Plasmodium vivax infections (73%). Compared to cases from the previous year (May-July 2016), outbreak cases were more likely to be rubber tappers (OR = 14.89 [95% CI: 5.79-38.29]; p < 0.001) and infected with P. vivax (OR=2.32 [1.27-4.22]; p = 0.006). Themes from KIIs were congruent with findings from routine surveillance data. Though limited risk factor information was available from military cases, findings from RTA's "1-3-7" study indicated transmission was likely occurring outside military bases. Data from entomological surveys and MSAT campaigns support this hypothesis, as vectors were mostly exophagic and parasite prevalence from MSAT campaigns was very low (range: 0-0.7% by PCR/microscopy). CONCLUSIONS: In 2017, an outbreak of mainly P. vivax occurred in Sisaket Province, affecting mainly military and rubber tappers. Vector control use was limited to the home/military barracks, indicating that additional interventions were needed during high-risk forest travel periods. Importantly, this outbreak catalyzed joint civilian-military collaborations and integration of the RTA into the national malaria elimination strategy (NMES). The Sisaket outbreak response serves as an example of how civilian and military public health systems can collaborate to advance national malaria elimination goals in Southeast Asia and beyond.


Assuntos
Erradicação de Doenças/organização & administração , Malária Falciparum/prevenção & controle , Malária Vivax/prevenção & controle , Participação dos Interessados , Surtos de Doenças , Malária Falciparum/epidemiologia , Malária Vivax/epidemiologia , Militares/estatística & dados numéricos , Plasmodium falciparum/isolamento & purificação , Plasmodium vivax/isolamento & purificação , Prevalência , Fatores de Risco , Tailândia/epidemiologia
15.
Antimicrob Agents Chemother ; 65(11): e0067121, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34398671

RESUMO

Information on causative diarrheal pathogens and their associated antimicrobial susceptibility remains limited for Cambodia. This study describes antimicrobial resistance patterns for Shigella and nontyphoidal Salmonella isolates collected in Cambodia over a 5-year period. Multidrug resistance was shown in 98% of Shigella isolates, with 70%, 11%, and 29% of isolates being resistant to fluoroquinolones, azithromycin, and cephalosporin, respectively. As many as 11% of Shigella isolates were resistant to nearly all oral and parenteral drugs typically used for shigellosis, demonstrating extreme drug resistance phenotypes. Although a vast majority of nontyphoidal Salmonella isolates remained susceptible to cephalosporins (99%) and macrolides (98%), decreased susceptibility to ciprofloxacin was found in 67% of isolates, which is notably higher than previous reports. In conclusion, increasing antimicrobial resistance of Shigella and nontyphoidal Salmonella is a major concern for selecting empirical treatment of acute infectious diarrhea in Cambodia. Treatment practices should be updated and follow local antimicrobial resistance data for the identified pathogens.


Assuntos
Shigella , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Camboja , Diarreia/tratamento farmacológico , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Salmonella
16.
Am J Trop Med Hyg ; 105(4): 1093-1096, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34270459

RESUMO

We determined the prevalence of Kelch 13 mutations and pfmdr1 copy number in samples collected from the Thailand-Myanmar border, the Thailand-Cambodia border, and southern Thailand from 2002 to 2007. C580Y was the most prevalent in Trat (Thailand-Cambodia border) and Ranong (Thailand-Myanmar border) at 42% (24/57) and 13% (6/48), respectively. Less predominant mutations were also identified including R539T (7%, 4/57) and Y493H (2%, 1/57) in Trat, P574L (6%, 3/48) and P553L (2%, 1/48) in Ranong, and N537I and D452E (7%, 1/15) in Sangkhlaburi (Thailand-Myanmar border). Samples from Mae sot (33%, 11/33) harbored the highest percentage of multiple pfmdr1 copies, followed by Trat (18%, 10/57), Chiang Dao in 2003 (13%, 4/30), Phang Nga (5%, 2/44), and Chiang Dao in 2002 (4%, 1/26). This retrospective study provides geographic diversity of K13 and pfmdr1 copies and the emergence of these molecular markers in Thailand, an important background information for future surveillance in the region.


Assuntos
Variações do Número de Cópias de DNA/genética , Malária Falciparum/parasitologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Plasmodium falciparum/genética , Resistência a Medicamentos , Humanos , Malária Falciparum/epidemiologia , Tailândia/epidemiologia
17.
Sci Rep ; 11(1): 13419, 2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34183715

RESUMO

Malaria remains a public health problem in Thailand, especially along its borders where highly mobile populations can contribute to persistent transmission. This study aimed to determine resistant genotypes and phenotypes of 112 Plasmodium falciparum isolates from patients along the Thai-Cambodia border during 2013-2015. The majority of parasites harbored a pfmdr1-Y184F mutation. A single pfmdr1 copy number had CVIET haplotype of amino acids 72-76 of pfcrt and no pfcytb mutations. All isolates had a single pfk13 point mutation (R539T, R539I, or C580Y), and increased % survival in the ring-stage survival assay (except for R539I). Multiple copies of pfpm2 and pfcrt-F145I were detected in 2014 (12.8%) and increased to 30.4% in 2015. Parasites containing either multiple pfpm2 copies with and without pfcrt-F145I or a single pfpm2 copy with pfcrt-F145I exhibited elevated IC90 values of piperaquine. Collectively, the emergence of these resistance patterns in Thailand near Cambodia border mirrored the reports of dihydroartemisinin-piperaquine treatment failures in the adjacent province of Cambodia, Oddar Meanchey, suggesting a migration of parasites across the border. As malaria elimination efforts ramp up in Southeast Asia, host nations militaries and other groups in border regions need to coordinate the proposed interventions.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Quinolinas/farmacologia , Adolescente , Adulto , Idoso , Antimaláricos/administração & dosagem , Antimaláricos/uso terapêutico , Artemisininas/administração & dosagem , Artemisininas/uso terapêutico , Variações do Número de Cópias de DNA , DNA de Protozoário/genética , Quimioterapia Combinada , Doenças Endêmicas , Feminino , Estudos de Associação Genética , Genótipo , Haplótipos/genética , Humanos , Malária Falciparum/epidemiologia , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Parasitemia/epidemiologia , Plasmodium falciparum/genética , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/genética , Proteínas de Protozoários/fisiologia , Quinolinas/administração & dosagem , Quinolinas/uso terapêutico , Tailândia/epidemiologia , Adulto Jovem
18.
J Infect Dis ; 224(6): 1077-1085, 2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-33528566

RESUMO

BACKGROUND: Newly emerged mutations within the Plasmodium falciparum chloroquine resistance transporter (PfCRT) can confer piperaquine resistance in the absence of amplified plasmepsin II (pfpm2). In this study, we estimated the prevalence of co-circulating piperaquine resistance mutations in P. falciparum isolates collected in northern Cambodia from 2009 to 2017. METHODS: The sequence of pfcrt was determined for 410 P. falciparum isolates using PacBio amplicon sequencing or whole genome sequencing. Quantitative polymerase chain reaction was used to estimate pfpm2 and pfmdr1 copy number. RESULTS: Newly emerged PfCRT mutations increased in prevalence after the change to dihydroartemisinin-piperaquine in 2010, with >98% of parasites harboring these mutations by 2017. After 2014, the prevalence of PfCRT F145I declined, being outcompeted by parasites with less resistant, but more fit PfCRT alleles. After the change to artesunate-mefloquine, the prevalence of parasites with amplified pfpm2 decreased, with nearly half of piperaquine-resistant PfCRT mutants having single-copy pfpm2. CONCLUSIONS: The large proportion of PfCRT mutants that lack pfpm2 amplification emphasizes the importance of including PfCRT mutations as part of molecular surveillance for piperaquine resistance in this region. Likewise, it is critical to monitor for amplified pfmdr1 in these PfCRT mutants, as increased mefloquine pressure could lead to mutants resistant to both drugs.


Assuntos
Antimaláricos/farmacologia , Biomarcadores/metabolismo , Resistência a Medicamentos/genética , Malária Falciparum/tratamento farmacológico , Proteínas de Membrana Transportadoras/genética , Piperazinas/uso terapêutico , Proteínas de Protozoários/genética , Quinolinas/uso terapêutico , Animais , Antimaláricos/uso terapêutico , Camboja/epidemiologia , Resistência a Medicamentos/efeitos dos fármacos , Malária Falciparum/epidemiologia , Mefloquina/uso terapêutico , Mutação/efeitos dos fármacos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/isolamento & purificação , Prevalência , Reação em Cadeia da Polimerase em Tempo Real
19.
Artigo em Inglês | MEDLINE | ID: mdl-33361308

RESUMO

Atovaquone-proguanil remains effective against multidrug-resistant Plasmodium falciparum in Southeast Asia, but resistance is mediated by a single point mutation in cytochrome b (cytb) that can arise during treatment. Among 14 atovaquone-proguanil treatment failures in a clinical trial in Cambodia, only one recrudescence harbored the cytb mutation Y268C. Deep sequencing did not detect the mutation at baseline or in the first 3 days of treatment, suggesting that it arose de novo Further sequencing across cytb similarly found no low-frequency cytb mutations that were up-selected from baseline to recrudescence. Copy number amplification in dihydroorotate dehydrogenase (DHODH) and cytb as markers of atovaquone tolerance was also absent. Cytb mutation played a minor role in atovaquone-proguanil treatment failures in an active comparator clinical trial.


Assuntos
Antimaláricos , Malária Falciparum , Naftoquinonas , Antimaláricos/uso terapêutico , Atovaquona/uso terapêutico , Camboja , Citocromos b/genética , Combinação de Medicamentos , Humanos , Malária Falciparum/tratamento farmacológico , Naftoquinonas/uso terapêutico , Plasmodium falciparum/genética , Proguanil/uso terapêutico
20.
Malar J ; 19(1): 269, 2020 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-32711538

RESUMO

BACKGROUND: High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 (pfpm2), exonuclease (pfexo) and chloroquine resistance transporter (pfcrt) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy. METHODS: To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined. RESULTS: The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovaquone-proguanil combinations revealed synergistic antimalarial activity. CONCLUSIONS: Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.


Assuntos
Antimaláricos/farmacologia , Resistência a Medicamentos , Genótipo , Fenótipo , Plasmodium falciparum/genética , Quinolinas/farmacologia , Camboja , Marcadores Genéticos , Plasmodium falciparum/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...