Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.027
Filtrar
1.
Plant J ; 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509728

RESUMO

Capturing images of the nuclear dynamics within live cells is an essential technique for comprehending the intricate biological processes inherent to plant cell nuclei. While various methods exist for imaging nuclei, including combining fluorescent proteins and dyes with microscopy, there is a dearth of commercially available dyes for live-cell imaging. In Arabidopsis thaliana, we discovered that nuclei emit autofluorescence in the near-infrared (NIR) range of the spectrum and devised a non-invasive technique for the visualization of live cell nuclei using this inherent NIR autofluorescence. Our studies demonstrated the capability of the NIR imaging technique to visualize the dynamic behavior of nuclei within primary roots, root hairs, and pollen tubes, which are tissues that harbor a limited number of other organelles displaying autofluorescence. We further demonstrated the applicability of NIR autofluorescence imaging in various other tissues by incorporating fluorescence lifetime imaging techniques. Nuclear autofluorescence was also detected across a wide range of plant species, enabling analyses without the need for transformation. The nuclear autofluorescence in the NIR wavelength range was not observed in animal or yeast cells. Genetic analysis revealed that this autofluorescence was caused by the phytochrome protein. Our studies demonstrated that nuclear autofluorescence imaging can be effectively employed not only in model plants but also for studying nuclei in non-model plant species.

2.
Cell Host Microbe ; 32(4): 543-556.e6, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38479394

RESUMO

Plant roots are functionally heterogeneous in cellular architecture, transcriptome profile, metabolic state, and microbial immunity. We hypothesized that axial differentiation may also impact spatial colonization by root microbiota along the root axis. We developed two growth systems, ArtSoil and CD-Rhizotron, to grow and then dissect Arabidopsis thaliana roots into three segments. We demonstrate that distinct endospheric and rhizosphere bacterial communities colonize the segments, supporting the hypothesis of microbiota differentiation along the axis. Root metabolite profiling of each segment reveals differential metabolite enrichment and specificity. Bioinformatic analyses and GUS histochemistry indicate microbe-induced accumulation of SWEET2, 4, and 12 sugar uniporters. Profiling of root segments from sweet mutants shows altered spatial metabolic profiles and reorganization of endospheric root microbiota. This work reveals the interdependency between root metabolites and microbial colonization and the contribution of SWEETs to spatial diversity and stability of microbial ecosystem.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Microbiota , Arabidopsis/microbiologia , Bactérias/metabolismo , Rizosfera , Açúcares/metabolismo , Raízes de Plantas/microbiologia , Proteínas de Transporte de Monossacarídeos/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
3.
Plant Biotechnol J ; 22(5): 1299-1311, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38124291

RESUMO

Rice yellow mottle virus (RYMV) causes one of the most devastating rice diseases in Africa. Management of RYMV is challenging. Genetic resistance provides the most effective and environment-friendly control. The recessive resistance locus rymv2 (OsCPR5.1) had been identified in African rice (Oryza glaberrima), however, introgression into Oryza sativa ssp. japonica and indica remains challenging due to crossing barriers. Here, we evaluated whether CRISPR/Cas9 genome editing of the two rice nucleoporin paralogs OsCPR5.1 (RYMV2) and OsCPR5.2 can be used to introduce RYMV resistance into the japonica variety Kitaake. Both paralogs had been shown to complement the defects of the Arabidopsis atcpr5 mutant, indicating partial redundancy. Despite striking sequence and structural similarities between the two paralogs, only oscpr5.1 loss-of-function mutants were fully resistant, while loss-of-function oscpr5.2 mutants remained susceptible, intimating that OsCPR5.1 plays a specific role in RYMV susceptibility. Notably, edited lines with short in-frame deletions or replacements in the N-terminal domain (predicted to be unstructured) of OsCPR5.1 were hypersusceptible to RYMV. In contrast to mutations in the single Arabidopsis AtCPR5 gene, which caused severely dwarfed plants, oscpr5.1 and oscpr5.2 single and double knockout mutants showed neither substantial growth defects nor symptoms indicative lesion mimic phenotypes, possibly reflecting functional differentiation. The specific editing of OsCPR5.1, while maintaining OsCPR5.2 activity, provides a promising strategy for generating RYMV-resistance in elite Oryza sativa lines as well as for effective stacking with other RYMV resistance genes or other traits.


Assuntos
Arabidopsis , Oryza , Vírus de Plantas , Oryza/genética , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Arabidopsis/genética , Edição de Genes
4.
Biochemistry ; 63(1): 171-180, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38113455

RESUMO

Genetically encoded sensors enable quantitative imaging of analytes in live cells. Sensors are commonly constructed by combining ligand-binding domains with one or more sensitized fluorescent protein (FP) domains. Sensors based on a single FP can be susceptible to artifacts caused by changes in sensor levels or distribution in vivo. To develop intensiometric sensors with the capacity for ratiometric quantification, dual-FP Matryoshka sensors were generated by using a single cassette with a large Stokes shift (LSS) reference FP nested within the reporter FP (cpEGFP). Here, we present a genetically encoded calcium sensor that employs green apple (GA) Matryoshka technology by incorporating a newly designed red LSSmApple fluorophore. LSSmApple matures faster and provides an optimized excitation spectrum overlap with cpEGFP, allowing for monochromatic coexcitation with blue light. The LSS of LSSmApple results in improved emission spectrum separation from cpEGFP, thereby minimizing fluorophore bleed-through and facilitating imaging using standard dichroic and red FP (RFP) emission filters. We developed an image analysis pipeline for yeast (Saccharomyces cerevisiae) timelapse imaging that utilizes LSSmApple to segment and track cells for high-throughput quantitative analysis. In summary, we engineered a new FP, constructed a genetically encoded calcium indicator (GA-MatryoshCaMP6s), and performed calcium imaging in yeast as a demonstration.


Assuntos
Cálcio , Saccharomyces cerevisiae , Proteínas Luminescentes/química , Cálcio/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteína Vermelha Fluorescente , Corantes Fluorescentes
6.
Elife ; 122023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37337668

RESUMO

Bacterial leaf blight (BB) of rice, caused by Xanthomonas oryzae pv. oryzae (Xoo), threatens global food security and the livelihood of small-scale rice producers. Analyses of Xoo collections from Asia, Africa and the Americas demonstrated complete continental segregation, despite robust global rice trade. Here, we report unprecedented BB outbreaks in Tanzania. The causative strains, unlike endemic African Xoo, carry Asian-type TAL effectors targeting the sucrose transporter SWEET11a and iTALes suppressing Xa1. Phylogenomics clustered these strains with Xoo from Southern-China. African rice varieties do not carry effective resistance. To protect African rice production against this emerging threat, we developed a hybrid CRISPR-Cas9/Cpf1 system to edit all known TALe-binding elements in three SWEET promoters of the East African elite variety Komboka. The edited lines show broad-spectrum resistance against Asian and African strains of Xoo, including strains recently discovered in Tanzania. The strategy could help to protect global rice crops from BB pandemics.


Assuntos
Oryza , Xanthomonas , Edição de Genes , Oryza/genética , Efetores Semelhantes a Ativadores de Transcrição , Xanthomonas/genética , Tanzânia , Doenças das Plantas/microbiologia , Resistência à Doença/genética
7.
New Phytol ; 238(2): 637-653, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36636779

RESUMO

Plasmodesmata (PD) facilitate movement of molecules between plant cells. Regulation of this movement is still not understood. Plasmodesmata are hard to study, being deeply embedded within cell walls and incorporating several membrane types. Thus, structure and protein composition of PD remain enigmatic. Previous studies of PD protein composition identified protein lists with few validations, making functional conclusions difficult. We developed a PD scoring approach in iteration with large-scale systematic localization, defining a high-confidence PD proteome of Physcomitrium patens (HC300). HC300, together with bona fide PD proteins from literature, were placed in Pddb. About 65% of proteins in HC300 were not previously PD-localized. Callose-degrading glycolyl hydrolase family 17 (GHL17) is an abundant protein family with representatives across evolutionary scale. Among GHL17s, we exclusively found members of one phylogenetic clade with PD localization and orthologs occur only in species with developed PD. Phylogenetic comparison was expanded to xyloglucan endotransglucosylases/hydrolases and Exordium-like proteins, which also diversified into PD-localized and non-PD-localized members on distinct phylogenetic clades. Our high-confidence PD proteome HC300 provides insights into diversification of large protein families. Iterative and systematic large-scale localization across plant species strengthens the reliability of HC300 as basis for exploring structure, function, and evolution of this important organelle.


Assuntos
Plasmodesmos , Proteoma , Proteoma/metabolismo , Plasmodesmos/metabolismo , Filogenia , Reprodutibilidade dos Testes , Parede Celular/metabolismo
9.
Rev Sci Instrum ; 93(11): 113902, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36461492

RESUMO

We report the realization of an advanced technique for measuring relative length changes ΔL/L of mm-sized samples under the control of temperature (T) and helium-gas pressure (P). The system, which is an extension of the apparatus described in the work of Manna et al. [Rev. Sci. Instrum. 83, 085111 (2012)], consists of two 4He-bath cryostats, each of which houses a pressure cell and a capacitive dilatometer. The interconnection of the pressure cells, the temperature of which can be controlled individually, opens up various modes of operation to perform measurements of ΔL/L under the variation of temperature and pressure. Special features of this apparatus include the possibility (1) to increase the pressure to values far in excess of the external pressure reservoir, (2) to substantially improve the pressure stability during temperature sweeps, (3) to enable continuous pressure sweeps with both decreasing and increasing pressure, and (4) to simultaneously measure the dielectric constant of the pressure-transmitting medium, viz., helium, εr He(T,P), along the same T-P trajectory as that used for taking the ΔL(T, P)/L data. The performance of the setup is demonstrated by measurements of relative length changes (ΔL/L)T at T = 180 K of single crystalline NaCl upon continuously varying the pressure in the range 6 ≤ P ≤ 40 MPa.

10.
Proc Natl Acad Sci U S A ; 119(42): e2207558119, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36215460

RESUMO

SWEET sucrose transporters play important roles in the allocation of sucrose in plants. Some SWEETs were shown to also mediate transport of the plant growth regulator gibberellin (GA). The close physiological relationship between sucrose and GA raised the questions of whether there is a functional connection and whether one or both of the substrates are physiologically relevant. To dissect these two activities, molecular dynamics were used to map the binding sites of sucrose and GA in the pore of SWEET13 and predicted binding interactions that might be selective for sucrose or GA. Transport assays confirmed these predictions. In transport assays, the N76Q mutant had 7x higher relative GA3 activity, and the S142N mutant only transported sucrose. The impaired pollen viability and germination in sweet13;14 double mutants were complemented by the sucrose-selective SWEET13S142N, but not by the SWEET13N76Q mutant, indicating that sucrose is the physiologically relevant substrate and that GA transport capacity is dispensable in the context of male fertility. Therefore, GA supplementation to counter male sterility may act indirectly via stimulating sucrose supply in male sterile mutants. These findings are also relevant in the context of the role of SWEETs in pathogen susceptibility.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Fertilidade/genética , Regulação da Expressão Gênica de Plantas , Giberelinas/metabolismo , Proteínas de Transporte de Monossacarídeos , Reguladores de Crescimento de Plantas/metabolismo , Sacarose/metabolismo
11.
Biomolecules ; 12(6)2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-35740912

RESUMO

Interactions between physical forces and membrane proteins underpin many forms of environmental sensation and acclimation. Microbes survive osmotic stresses with the help of mechanically gated ion channels and osmolyte transporters. Plant mechanosensitive ion channels have been shown to function in defense signaling. Here, we engineered genetically encoded osmolality sensors (OzTracs) by fusing fluorescent protein spectral variants to the mechanosensitive ion channels MscL from E. coli or MSL10 from A. thaliana. When expressed in yeast cells, the OzTrac sensors reported osmolality changes as a proportional change in the emission ratio of the two fluorescent protein domains. Live-cell imaging revealed an accumulation of fluorescent sensors in internal aggregates, presumably derived from the endomembrane system. Thus, OzTrac sensors serve as osmolality-dependent reporters through an indirect mechanism, such as effects on molecular crowding or fluorophore solvation.


Assuntos
Proteínas de Arabidopsis , Proteínas de Escherichia coli , Canais Iônicos , Proteínas de Membrana , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Concentração Osmolar , Pressão Osmótica
12.
New Phytol ; 234(3): 975-989, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35211968

RESUMO

SWEETs play important roles in intercellular sugar transport. Induction of SWEET sugar transporters by Transcription Activator-Like effectors (TALe) of Xanthomonas ssp. is key for virulence in rice, cassava and cotton. We identified OsSWEET11b with roles in male fertility and potential bacterial blight (BB) susceptibility in rice. While single ossweet11a or 11b mutants were fertile, double mutants were sterile. As clade III SWEETs can transport gibberellin (GA), a key hormone for spikelet fertility, sterility and BB susceptibility might be explained by GA transport deficiencies. However, in contrast with the Arabidopsis homologues, OsSWEET11b did not mediate detectable GA transport. Fertility and susceptibility therefore are likely to depend on sucrose transport activity. Ectopic induction of OsSWEET11b by designer TALe enabled TALe-free Xanthomonas oryzae pv. oryzae (Xoo) to cause disease, identifying OsSWEET11b as a potential BB susceptibility gene and demonstrating that the induction of host sucrose uniporter activity is key to virulence of Xoo. Notably, only three of six clade III SWEETs are targeted by known Xoo strains from Asia and Africa. The identification of OsSWEET11b is relevant for fertility and for protecting rice against emerging Xoo strains that target OsSWEET11b.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Oryza , Proteínas de Plantas/metabolismo , Xanthomonas , Proteínas de Bactérias/metabolismo , Resistência à Doença/genética , Fertilidade , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Oryza/metabolismo , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Sacarose , Xanthomonas/genética
13.
J Plant Physiol ; 270: 153633, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35151953

RESUMO

During multicellularization, plants evolved unique cell-cell connections, the plasmodesmata (PD). PD of angiosperms are complex cellular domains, embedded in the cell wall and consisting of multiple membranes and a large number of proteins. From the beginning, it had been assumed that PD provide passage for a wide range of molecules, from ions to metabolites and hormones, to RNAs and even proteins. In the context of assimilate allocation, it has been hypothesized that sucrose produced in mesophyll cells is transported via PD from cell to cell down a concentration gradient towards the phloem. Entry into the sieve element companion cell complex (SECCC) is then mediated on three potential routes, depending on the species and conditions, - either via diffusion across PD, after conversion to raffinose via PD using a polymer trap mechanism, or via a set of transporters which secrete sucrose from one cell and secondary active uptake into the SECCC. Multiple loading mechanisms can likely coexist. We here review the current knowledge regarding photoassimilate transport across PD between cells as a prerequisite for translocation from leaves to recipient organs, in particular roots and developing seeds. We summarize the state-of-the-art in protein composition, structure, transport mechanism and regulation of PD to apprehend their functions in carbohydrate allocation. Since many aspects of PD biology remain elusive, we highlight areas that require new approaches and technologies to advance our understanding of these enigmatic and important cell-cell connections.

14.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35046045

RESUMO

SWEETs are transporters with homologs in Archeae, plants, some fungi, and animals. As the only transporters known to facilitate the cellular release of sugars in plants, SWEETs play critical roles in the allocation of sugars from photosynthetic leaves to storage tissues in seeds, fruits, and tubers. Here, we report the design and use of genetically encoded biosensors to measure the activity of SWEETs. We created a SweetTrac1 sensor by inserting a circularly permutated green fluorescent protein into the Arabidopsis SWEET1, resulting in a chimera that translates substrate binding during the transport cycle into detectable changes in fluorescence intensity. We demonstrate that a combination of cell sorting and bioinformatics can accelerate the design of biosensors and formulate a mass action kinetics model to correlate the fluorescence response of SweetTrac1 with the transport of glucose. Our analysis suggests that SWEETs are low-affinity, symmetric transporters that can rapidly equilibrate intra- and extracellular concentrations of sugars. This approach can be extended to SWEET homologs and other transporters.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Técnicas Biossensoriais , Proteínas de Transporte de Monossacarídeos/metabolismo , Açúcares/metabolismo , Proteínas de Arabidopsis/genética , Transporte Biológico , Técnicas Biossensoriais/métodos , Proteínas de Transporte de Monossacarídeos/genética
16.
Plant J ; 109(3): 664-674, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34783104

RESUMO

Plants use electrical and chemical signals for systemic communication. Herbivory, for instance, appears to trigger local apoplasmic glutamate accumulation, systemic electrical signals, and calcium waves that travel to report insect damage to neighboring leaves and initiate defense. To monitor extra- and intracellular glutamate concentrations in plants, we generated Arabidopsis lines expressing genetically encoded fluorescent glutamate sensors. In contrast to cytosolically localized sensors, extracellularly displayed variants inhibited plant growth and proper development. Phenotypic analyses of high-affinity display sensor lines revealed that root meristem development, particularly the quiescent center, number of lateral roots, vegetative growth, and floral architecture were impacted. Notably, the severity of the phenotypes was positively correlated with the affinity of the display sensors, intimating that their ability to sequester glutamate at the surface of the plasma membrane was responsible for the defects. Root growth defects were suppressed by supplementing culture media with low levels of glutamate. Together, the data indicate that sequestration of glutamate at the cell surface either disrupts the supply of glutamate to meristematic cells and/or impairs localized glutamatergic signaling important for developmental processes.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ácido Glutâmico/genética , Ácido Glutâmico/metabolismo , Desenvolvimento Vegetal/genética , Folhas de Planta/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Desenvolvimento Vegetal/efeitos dos fármacos , Folhas de Planta/genética
17.
Sci Adv ; 7(37): eabg4298, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34516872

RESUMO

Glutamate has dual roles in metabolism and signaling; thus, signaling functions must be isolatable and distinct from metabolic fluctuations, as seen in low-glutamate domains at synapses. In plants, wounding triggers electrical and calcium (Ca2+) signaling, which involve homologs of mammalian glutamate receptors. The hydraulic dispersal and squeeze-cell hypotheses implicate pressure as a key component of systemic signaling. Here, we identify the stretch-activated anion channel MSL10 as necessary for proper wound-induced electrical and Ca2+ signaling. Wound gene induction, genetics, and Ca2+ imaging indicate that MSL10 acts in the same pathway as the glutamate receptor­like proteins (GLRs). Analogous to mammalian NMDA glutamate receptors, GLRs may serve as coincidence detectors gated by the combined requirement for ligand binding and membrane depolarization, here mediated by stretch activation of MSL10. This study provides a molecular genetic basis for a role of mechanical signal perception and the transmission of long-distance electrical and Ca2+ signals in plants.

18.
PLoS Genet ; 17(8): e1009689, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34383745

RESUMO

Elucidating the transcriptional regulatory networks that underlie growth and development requires robust ways to define the complete set of transcription factor (TF) binding sites. Although TF-binding sites are known to be generally located within accessible chromatin regions (ACRs), pinpointing these DNA regulatory elements globally remains challenging. Current approaches primarily identify binding sites for a single TF (e.g. ChIP-seq), or globally detect ACRs but lack the resolution to consistently define TF-binding sites (e.g. DNAse-seq, ATAC-seq). To address this challenge, we developed MNase-defined cistrome-Occupancy Analysis (MOA-seq), a high-resolution (< 30 bp), high-throughput, and genome-wide strategy to globally identify putative TF-binding sites within ACRs. We used MOA-seq on developing maize ears as a proof of concept, able to define a cistrome of 145,000 MOA footprints (MFs). While a substantial majority (76%) of the known ATAC-seq ACRs intersected with the MFs, only a minority of MFs overlapped with the ATAC peaks, indicating that the majority of MFs were novel and not detected by ATAC-seq. MFs were associated with promoters and significantly enriched for TF-binding and long-range chromatin interaction sites, including for the well-characterized FASCIATED EAR4, KNOTTED1, and TEOSINTE BRANCHED1. Importantly, the MOA-seq strategy improved the spatial resolution of TF-binding prediction and allowed us to identify 215 motif families collectively distributed over more than 100,000 non-overlapping, putatively-occupied binding sites across the genome. Our study presents a simple, efficient, and high-resolution approach to identify putative TF footprints and binding motifs genome-wide, to ultimately define a native cistrome atlas.


Assuntos
Pegada de DNA/métodos , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo , Zea mays/genética , Sítios de Ligação , Sequenciamento de Cromatina por Imunoprecipitação , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Elementos Reguladores de Transcrição , Sequenciamento Completo do Genoma
19.
Plant Cell Physiol ; 62(8): 1259-1268, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34233356

RESUMO

Fluorescent probes are powerful tools for visualizing cellular and subcellular structures, their dynamics and cellular molecules in living cells and enable us to monitor cellular processes in a spatiotemporal manner within complex and crowded systems. In addition to popular fluorescent proteins, a wide variety of small-molecule dyes have been synthesized through close association with the interdisciplinary field of chemistry and biology, ranging from those suitable for labeling cellular compartments such as organelles to those for labeling intracellular biochemical and biophysical processes and signaling. In recent years, self-labeling technologies including the SNAP-tag system have allowed us to attach these dyes to cellular domains or specific proteins and are beginning to be employed in plant studies. In this mini review, we will discuss the current range of synthetic fluorescent probes that have been exploited for live-cell imaging and the recent advances in the application that enable genetical tagging of synthetic probes in plant research.


Assuntos
Corantes Fluorescentes , Imageamento Tridimensional/métodos , Microscopia Intravital/métodos , Microscopia de Fluorescência/métodos , Células Vegetais/fisiologia
20.
Plant Cell ; 33(3): 511-530, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33955487

RESUMO

The leaf vasculature plays a key role in solute translocation. Veins consist of at least seven distinct cell types, with specific roles in transport, metabolism, and signaling. Little is known about leaf vascular cells, in particular the phloem parenchyma (PP). PP effluxes sucrose into the apoplasm as a basis for phloem loading, yet PP has been characterized only microscopically. Here, we enriched vascular cells from Arabidopsis leaves to generate a single-cell transcriptome atlas of leaf vasculature. We identified at least 19 cell clusters, encompassing epidermis, guard cells, hydathodes, mesophyll, and all vascular cell types, and used metabolic pathway analysis to define their roles. Clusters comprising PP cells were enriched for transporters, including SWEET11 and SWEET12 sucrose and UmamiT amino acid efflux carriers. We provide evidence that PP development occurs independently from ALTERED PHLOEM DEVELOPMENT, a transcription factor required for phloem differentiation. PP cells have a unique pattern of amino acid metabolism activity distinct from companion cells (CCs), explaining differential distribution/metabolism of amino acids in veins. The kinship relation of the vascular clusters is strikingly similar to the vein morphology, except for a clear separation of CC from the other vascular cells including PP. In summary, our single-cell RNA-sequencing analysis provides a wide range of information into the leaf vasculature and the role and relationship of the leaf cell types.


Assuntos
Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Transcriptoma/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Floema/metabolismo , Folhas de Planta/genética , Proteínas de Plantas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...