Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Am J Primatol ; 86(6): e23622, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38561573

RESUMO

The consumption of primates is integral to the traditional subsistence strategies of many Indigenous communities throughout Amazonia. Understanding the overall health of primates harvested for food in the region is critical to Indigenous food security and thus, these communities are highly invested in long-term primate population health. Here, we describe the establishment of a surveillance comanagement program among the Waiwai, an Indigenous community in the Konashen Amerindian Protected Area (KAPA). To assess primate health in the KAPA, hunters performed field necropsies on primates harvested for food and tissues collected from these individuals were analyzed using histopathology. From 2015 to 2019, hunters conducted 127 necropsies across seven species of primates. Of this sample, 82 primates (between 2015 and 2017) were submitted for histopathological screening. Our histopathology data revealed that KAPA primates had little evidence of underlying disease. Of the tissue abnormalities observed, the majority were either due to diet (e.g., hepatocellular pigment), degenerative changes resulting from aging (e.g., interstitial nephritis, myocyte lipofusion), or nonspecific responses to antigenic stimulation (renal and splenic lymphoid hyperplasia). In our sample, 7.32% of individuals had abnormalities that were consistent with a viral etiology, including myocarditis and hepatitis. Internal parasites were observed in 53.66% of individuals and is consistent with what would be expected from a free-ranging primate population. This study represents the importance of baseline data for long-term monitoring of primate populations hunted for food. More broadly, this research begins to close a critical gap in zoonotic disease risk related to primate harvesting in Amazonia, while also demonstrating the benefits of partnering with Indigenous hunters and leveraging hunting practices in disease surveillance and primate population health assessment.


Assuntos
Primatas , Animais , Guiana , Humanos , Doenças dos Primatas/virologia , Masculino , Povos Indígenas , Feminino
2.
Prion ; 18(1): 72-86, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38676289

RESUMO

Infectious prions are resistant to degradation and remain infectious in the environment for several years. Chronic wasting disease (CWD) has been detected in cervids inhabiting North America, the Nordic countries, and South Korea. CWD-prion spread is partially attributed to carcass transport and disposal. We employed a forensic approach to investigate an illegal carcass dump site connected with a CWD-positive herd. We integrated anatomic, genetic, and prion amplification methods to discover CWD-positive remains from six white-tailed deer (Odocoileus virginianus) and, using microsatellite markers, confirmed a portion originated from the CWD-infected herd. This approach provides a foundation for future studies of carcass prion transmission risk.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Doença de Emaciação Crônica/transmissão , Príons/genética , Príons/metabolismo , Repetições de Microssatélites/genética
3.
J Nematol ; 56(1): 20240009, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38495933

RESUMO

Parelaphostrongylus tenuis causes ungulate morbidity and mortality in eastern and central North America, but no reference genome sequence exists to facilitate research. Here, we present a P. tenuis genome assembly and annotation, generated with PacBio and Illumina technologies. The assembly is 491 Mbp, with 7285 scaffolds and 185 kb N50.

4.
Integr Environ Assess Manag ; 20(3): 846-863, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-37526115

RESUMO

Fish serve as indicators of exposure to contaminants of emerging concern (CECs)-chemicals such as pharmaceuticals, hormones, and personal care products-which are often designed to impact vertebrates. To investigate fish health and CECs in situ, we evaluated the health of wild fish exposed to CECs in waterbodies across northeastern Minnesota with varying anthropogenic pressures and CEC exposures: waterbodies with no human development along their shorelines, those with development, and those directly receiving treated wastewater effluent. Then, we compared three approaches to evaluate the health of fish exposed to CECs in their natural environment: a refined fish health assessment index, a histopathological index, and high-throughput (ToxCast) in vitro assays. Lastly, we mapped adverse outcome pathways (AOPs) associated with identified ToxCast assays to determine potential impacts across levels of biological organization within the aquatic system. These approaches were applied to subsistence fish collected from the Grand Portage Indian Reservation and 1854 Ceded Territory in 2017 and 2019. Overall, 24 CECs were detected in fish tissues, with all but one of the sites having at least one detection. The combined implementation of these tools revealed that subsistence fish exposed to CECs had histological and macroscopic tissue and organ abnormalities, although a direct causal link could not be established. The health of fish in undeveloped sites was as poor, or sometimes poorer, than fish in developed and wastewater effluent-impacted sites based on gross and histologic tissue lesions. Adverse outcome pathways revealed potential hazardous pathways of individual CECs to fish. A better understanding of how the health of wild fish harvested for consumption is affected by CECs may help prioritize risk management research efforts and can ultimately be used to guide fishery management and public health decisions. Integr Environ Assess Manag 2024;20:846-863. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).

5.
Conserv Physiol ; 11(1): coad003, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38026802

RESUMO

Pregnancy determination is necessary for sound wildlife management and understanding population dynamics. Pregnancy rates are sensitive to environmental and physiological factors and may indicate the overall trajectory of a population. Pregnancy can be assessed through direct methods (rectal palpation, sonography) or indicated using hormonal assays (serum progesterone or pregnancy-specific protein B, fecal progestogen metabolites). A commonly used threshold of 2 ng/ml of progesterone in serum has been used by moose biologists to indicate pregnancy but has not been rigorously investigated. To refine this threshold, we examined the relationship between progesterone concentrations in serum samples and pregnancy in 87 moose (Alces alces; 64 female, 23 male) captured from 2010 to 2020 in the Grand Portage Indian Reservation in northeastern Minnesota, USA. Pregnancy was confirmed via rectal palpation (n = 25), necropsy (n = 2), calf observation (n = 25) or characteristic pre-calving behavior (n = 6), with a total of 58 females determined pregnant and 6 not pregnant; 23 males were included to increase the non-pregnant sample size. Using receiver operating characteristic analysis, we identified an optimal threshold of 1.115 ng/ml with a specificity of 0.97 (95% confidence interval [CI] = 0.90-1.00) and a sensitivity of 0.98 (95% CI = 0.95-1.00). Progesterone concentrations were significantly higher in cases of pregnant versus non-pregnant cows, but we did not detect a difference between single and twin births. We applied our newly refined threshold to calculate annual pregnancy rates for all female moose (n = 133) captured in Grand Portage from 2010 to 2021. Mean pregnancy rate during this period was 91% and ranged annually from 69.2 to 100%. Developing a reliable method for determining pregnancy status via serum progesterone analyses will allow wildlife managers to assess pregnancy rates of moose without devoting substantial time and resources to palpation and calf monitoring.

6.
J Wildl Dis ; 59(4): 640-650, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37540143

RESUMO

Our understanding of wildlife multihost pathogen transmission systems is often incomplete due to the difficulty of observing contact between hosts. Understanding these interactions can be critical for preventing disease-induced wildlife declines. The proliferation of high-throughput sequencing technologies provides new opportunities to better explore these cryptic interactions. Parelaphostrongylus tenuis, a multihost parasite, is a leading cause of death in some moose (Alces alces) populations threatened by local extinction in the midwestern and northeastern US and southeastern Canada. Moose contract P. tenuis by consuming infected gastropod intermediate hosts, but little is known about which gastropod species moose consume. To gain more insight, we used a genetic metabarcoding approach on 258 georeferenced and temporally stratified moose fecal samples collected May-October 2017-20 from a declining population in the north-central US. We detected moose consumption of three species of gastropods across five positive samples. Two of these (Punctum minutissimum and Helisoma sp.) have been minimally investigated for the ability to host P. tenuis, while one (Zonitoides arboreus) is a well-documented host. Moose consumption of gastropods documented herein occurred in June and September. Our findings prove that moose consume gastropod species known to become infected by P. tenuis and demonstrate that fecal metabarcoding can provide novel insight on interactions between hosts of a multispecies pathogen transmission system. After determining and improving test sensitivity, these methods may also be extended to document important interactions in other multihost disease systems.


Assuntos
Cervos , Metastrongyloidea , Animais , Código de Barras de DNA Taxonômico/veterinária , Animais Selvagens , DNA , Cervos/parasitologia , Fezes/parasitologia
7.
Prev Vet Med ; 218: 106000, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37634409

RESUMO

The objective of this study was to evaluate risks related to introduction of Chronic Wasting Disease (CWD) to farmed cervid herds in Minnesota (MN), Pennsylvania (PA), and Wisconsin (WI). This was the first study to evaluate risk factors related to multiple pathways of CWD transmission to farmed cervid herds. Participating herds in this case-control study included 22 case and 49 control herds identified through participation in the respective mandatory State CWD herd program. Data was voluntarily collected from white-tailed deer (WTD) study herds using a questionnaire and state animal health agency databases. Univariable analyses identified associations between CWD-positive herds and variables representing different transmission pathways, including direct contact with infected farmed cervids (imported from a herd that later tested positive for CWD) odds ratio (OR):7.16, 95 % confidence intervals (CI):1.64-31.21 and indirect contact with infected wild cervids (access of domestic cats to pens or feed storage area) OR:4.07, 95 % CI:1.35-12.26, observed evidence of mammalian scavengers inside or outside of fenceline in the previous 12 months OR:6.55, 95 % CI:1.37-31.32, ≤ 5 km distance to nearest detected CWD-positive wild cervid OR:3.08, 95 % CI:1.01-9.39, forested area crosses the perimeter fenceline OR:3.54, 95 % CI:1.13-11.11, ≤ 0.3 m distance of water source to fenceline OR:4.71, 95 % CI:1.60-13.83, and water source shared with wild cervids (running or standing water) OR:4.17, 95 % CI:1.34-12.92. Three variables from univariable analyses that represented different biological transmission pathways were placed in a Firth's penalized maximum likelihood multivariable logistic regression to evaluate associations between transmission pathway and CWD herd infection status. For the issue of low sample size and overfitting, 95 % CIs for estimated coefficients for the three variables were computed via bootstrapping of 10,000 independent bootstrap samples. The three biological variables were significantly associated with herd CWD infection status: imported cervids from a herd that later tested positive for CWD (OR:5.63; 95 % CI:1.1-28.2), ≤ 0.3 m distance of cervid water source to perimeter fenceline (OR:4.83; 95 % CI:1.5-16.1), and ≤ 5 km distance to nearest detected CWD-positive wild cervid (OR:4.10; 95 % CI:1.1-15.2). The risk factors associated with CWD herd status identified in this study indicated the importance of transmission through direct contact pathways with infected cervid herds (introduction of cervids from herds later identified as CWD-infected) and indirect contact pathways with infected wild cervids that could be related to other animals through the perimeter fence. Further studies are needed to confirm and clarify understanding of indirect pathways to allow development of improved biosecurity practices to prevent CWD introduction to cervid herds.


Assuntos
Doenças do Gato , Cervos , Doença de Emaciação Crônica , Animais , Gatos , Minnesota/epidemiologia , Pennsylvania/epidemiologia , Estudos de Casos e Controles , Doença de Emaciação Crônica/epidemiologia , Wisconsin/epidemiologia , Fatores de Risco
8.
Pathogens ; 12(2)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36839581

RESUMO

Chronic wasting disease (CWD) is a disease affecting cervids and is caused by prions accumulating as pathogenic fibrils in lymphoid tissue and the central nervous system. Approaches for detecting CWD prions historically relied on antibody-based assays. However, recent advancements in protein amplification technology provided the foundation for a new class of CWD diagnostic tools. In particular, real-time quaking-induced conversion (RT-QuIC) has rapidly become a feasible option for CWD diagnosis. Despite its increased usage for CWD-focused research, there lacks a consensus regarding the interpretation of RT-QuIC data for diagnostic purposes. It is imperative then to identify a standardized and replicable method for determining CWD status from RT-QuIC data. Here, we assessed variables that could impact RT-QuIC results and explored the use of maxpoint ratios (maximumRFU/backgroundRFU) to improve the consistency of RT-QuIC analysis. We examined a variety of statistical analyses to retrospectively analyze CWD status based on RT-QuIC and ELISA results from 668 white-tailed deer lymph nodes. Our results revealed an MPR threshold of 2.0 for determining the rate of amyloid formation, and MPR analysis showed excellent agreement with independent ELISA results. These findings suggest that the use of MPR is a statistically viable option for normalizing between RT-QuIC experiments and defining CWD status.

9.
PLoS One ; 17(9): e0270615, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36166422

RESUMO

Given recent and abrupt declines in the abundance of moose (Alces alces) throughout parts of Minnesota and elsewhere in North America, accurately estimating statewide population trends and demographic parameters is a high priority for their continued management and conservation. Statistical population reconstruction using integrated population models provides a flexible framework for combining information from multiple studies to produce robust estimates of population abundance, recruitment, and survival. We used this framework to combine aerial survey data and survival data from telemetry studies to recreate trends and demographics of moose in northeastern Minnesota, USA, from 2005 to 2020. Statistical population reconstruction confirmed the sharp decline in abundance from an estimated 7,841 (90% CI = 6,702-8,933) in 2009 to 3,386 (90% CI = 2,681-4,243) animals in 2013, but also indicated that abundance has remained relatively stable since then, except for a slight decline to 3,163 (90% CI = 2,403-3,718) in 2020. Subsequent stochastic projection of the population from 2021 to 2030 suggests that this modest decline will continue for the next 10 years. Both annual adult survival and per-capita recruitment (number of calves that survived to 1 year per adult female alive during the previous year) decreased substantially in years 2005 and 2019, from 0.902 (SE = 0.043) to 0.689 (SE = 0.061) and from 0.386 (SE = 0.030) to 0.303 (SE = 0.051), respectively. Sensitivity analysis revealed that moose abundance was more sensitive to fluctuations in adult survival than recruitment; thus, we conclude that the steep decline in 2013 was driven primarily by decreasing adult survival. Our analysis demonstrates the potential utility of using statistical population reconstruction to monitor moose population trends and to identify population declines more quickly. Future studies should focus on providing better estimates of per-capita recruitment, using pregnancy rates and calf survival, which can then be incorporated into reconstruction models to help improve estimates of population change through time.


Assuntos
Cervos , Animais , Feminino , Minnesota/epidemiologia , América do Norte , Gravidez
10.
Sci Rep ; 12(1): 12246, 2022 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-35851406

RESUMO

Diagnostic tools for the detection of protein-misfolding diseases (i.e., proteopathies) are limited. Gold nanoparticles (AuNPs) facilitate sensitive diagnostic techniques via visual color change for the identification of a variety of targets. In parallel, recently developed quaking-induced conversion (QuIC) assays leverage protein-amplification and fluorescent signaling for the accurate detection of misfolded proteins. Here, we combine AuNP and QuIC technologies for the visual detection of amplified misfolded prion proteins from tissues of wild white-tailed deer infected with chronic wasting disease (CWD), a prion disease of cervids. Our newly developed assay, MN-QuIC, enables both naked-eye and light-absorbance measurements for detection of misfolded prions. MN-QuIC leverages basic laboratory equipment that is cost-effective and portable, thus facilitating real-time prion diagnostics across a variety of settings. In addition to laboratory-based tests, we deployed to a rural field-station in southeastern Minnesota and tested for CWD on site. We successfully demonstrated that MN-QuIC is functional in a non-traditional laboratory setting by performing a blinded analysis in the field and correctly identifying all CWD positive and CWD not-detected deer at the field site in 24 h, thus documenting the portability of the assay. White-tailed deer tissues used to validate MN-QuIC included medial retropharyngeal lymph nodes, parotid lymph nodes, and palatine tonsils. Importantly, all of the white-tailed deer (n = 63) were independently tested using ELISA, IHC, and/or RT-QuIC technologies and results secured with MN-QuIC were 95.7% and 100% consistent with these tests for positive and non-detected animals, respectively. We hypothesize that electrostatic forces help govern the AuNP/prion interactions and conclude that MN-QuIC has great potential for sensitive, field-deployable diagnostics for CWD, with future potential diagnostic applications for a variety of proteopathies.


Assuntos
Cervos , Nanopartículas Metálicas , Príons , Doença de Emaciação Crônica , Animais , Ouro , Príons/análise , Doença de Emaciação Crônica/metabolismo
11.
PLoS Negl Trop Dis ; 16(6): e0010469, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35687596

RESUMO

Domestic dogs (Canis lupus familiaris) can transmit a variety of pathogens due to their ubiquitousness in urban, rural and natural environments, and their close interactions with wildlife and humans. In this study, we used a mixed-methods approach to assess the role of domestic dogs as potential intermediaries of disease transmission from wildlife to humans among indigenous Waiwai in the Konashen Community Owned Conservation Area, Guyana. To address these objectives we 1) performed physical examinations and collected biological samples to assess Waiwai domestic dog health, and 2) administered questionnaires to characterize the role of dogs in the community and identify potential transmission pathways between wildlife, dogs, and humans. We observed ectoparasites on all dogs (n = 20), including: fleas (100%), ticks (15%), botflies (30%), and jigger flea lesions (Tunga penetrans) (80%). Ten percent of dogs were seropositive for Ehrlichia canis/ewingii, 10% were positive for Dirofilaria immitis, and one dog was seropositive for Leishmania infantum. All dogs (n = 20) were seronegative for: canine distemper virus, Brucella canis, Leptospira serovars, Trypanosoma cruzi, Anaplasma phagocytophilum/platys and Borrelia burgdorferi. Our questionnaire data revealed that the Waiwai remove ectoparasites from their dogs, clean up dog feces, and administer traditional and/or Western medicine to their dogs. White blood cell, strongyle-type ova, and eosinophil counts were lower in dogs that were not frequently used for hunting, dogs that did receive traditional and/or western medicine, and dogs that were frequently kept in elevated dog houses, although differences were not statistically significant. While our results suggest that the Waiwai have developed cultural practices that may promote dog health and/or prevent zoonotic disease transmission, more research is necessary to determine the efficacy of these practices. Our study provides important data on the health of dogs and the potential for disease transmission to humans in a zoonotic hotspot.


Assuntos
Borrelia burgdorferi , Dirofilaria immitis , Doenças do Cão , Ehrlichiose , Doença de Lyme , Anaplasma , Animais , Doenças do Cão/epidemiologia , Doenças do Cão/parasitologia , Cães , Ehrlichia , Ehrlichiose/veterinária , Guiana , Estudos Soroepidemiológicos
12.
Environ Int ; 166: 107347, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35753198

RESUMO

Chronic wasting disease (CWD) has been identified in 30 states in the United States, four provinces in Canada, and recently emerged in Scandinavia. The association of CWD prions with environmental materials such as soil, plants, and surfaces may enhance the persistence of CWD prion infectivity in the environment exacerbating disease transmission. Identifying and quantifying CWD prions in the environment is significant for prion monitoring and disease transmission control. A systematic method for CWD prion quantification from associated environmental materials, however, does not exist. In this study, we developed an innovative method for extracting prions from swabs and recovering CWD prions swabbed from different types of surfaces including glass, stainless steel, and wood. We found that samples dried on swabs were unfavorable for prion extraction, with the greatest prion recovery from wet swabs. Using this swabbing technique, the recovery of CWD prions dried to glass or stainless steel was approximately 30% in most cases, whereas that from wood was undetectable by conventional prion immunodetection techniques. Real-time quake-induced conversion (RT-QuIC) analysis of these same samples resulted in an increase of the detection limit of CWD prions from stainless steel by 4 orders of magnitude. More importantly, the RT-QuIC detection of CWD prions recovered from stainless steel surfaces using this method was similar to the original CWD prion load applied to the surface. This combined surface swabbing and RT-QuIC detection method provides an ultrasensitive means for prion detection across many settings and applications.


Assuntos
Cervos , Príons , Doença de Emaciação Crônica , Animais , Príons/análise , Doença de Emaciação Crônica/diagnóstico , Aço Inoxidável , Países Escandinavos e Nórdicos
13.
Pathogens ; 11(5)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631010

RESUMO

Chronic wasting disease (CWD) is a transmissible prion disease of the cervidae family. ELISA and IHC tests performed postmortem on the medial retropharyngeal lymph nodes (RPLN) or obex are considered diagnostic gold standards for prion detection. However, differences in CWD transmission, stage of infection, pathogenesis, and strain can limit performance. To overcome these uncertainties, we used Bayesian statistics to assess the accuracy of RT-QuIC, an increasingly used prion amplification assay, to diagnose CWD on tonsil (TLN), parotid (PLN) and submandibular lymph nodes (SMLN), and ELISA/IHC on RPLN of white-tailed deer (WTD) sampled from Minnesota. Dichotomous RT-QuIC and ELISA/IHC results from wild (n = 61) and captive (n = 46) WTD were analyzed with two-dependent-test, one-population models. RT-QuIC performed on TLN and SMLN of the wild WTD population had similar sensitivity (median range (MR): 92.2-95.1) to ELISA/IHC on RPLN (MR: 91.1-92.3). Slightly lower (4-7%) sensitivity estimates were obtained from farmed animal and PLN models. RT-QuIC specificity estimates were high (MR: 94.5-98.5%) and similar to ELISA/IHC estimates (MR: 95.7-97.6%) in all models. This study offers new insights on RT-QuIC and ELISA/IHC performance at the population level and under field conditions, an important step in CWD diagnosis and management.

14.
Curr Zool ; 68(3): 275-283, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35592351

RESUMO

Enhanced vegetation index (EVI) data can be used to identify and define the space in which ungulates practice parturition and encounter predation. This study explores the use of EVI data to identify landscapes linked to ungulate parturition and predation events across space, time, and environmental conditions. As a case study, we used the moose population (Alces alces) of northern Minnesota in the USA. Using remotely sensed EVI data rasters and global positioning system collar data, we quantified how vegetation phenology and moose movement shaped the births and predation of 52 moose calves from 2013 to 2020 on or adjacent to the Grand Portage Indian Reservation. The known sources of predation were American black bears (Ursus americanus, n = 22) and gray wolves (Canis lupus, n = 28). Satellite-derived data summarizing seasonal landscape features at the local level revealed that landscape heterogeneity use by moose can help to quantitatively identify landscapes of parturition and predation in space and time across large areas. Vegetation phenology proved to be differentiable between adult moose ranges, sites of cow parturition, and sites of calf predation. Landscape characteristics of each moose group were consistent and tractable based on environment, suggesting that sites of parturition and predation of moose are predictable in space and time. It is possible that moose selected specific landscapes for parturition despite risk of increased predation of their calves, which could be an example of an "ecological trap." This analytical framework can be employed to identify areas for future ungulate research on the impacts of landscape on parturition and predation dynamics.

15.
Front Vet Sci ; 9: 859028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464381

RESUMO

Meningeal worm, or Parelaphostrongylus tenuis (P. tenuis) is a nematode parasite that can invade the nervous system of small ruminant and camelid species such as alpaca, llama, goats and sheep. Limited reports exist on the epidemiology of disease caused by the nematode in susceptible livestock. We examined archived necropsy reports from small ruminant and camelid mortalities that were submitted, post mortem, to the University of Minnesota Veterinary Diagnostic Laboratory (MNVDL) during 2001-2019 for gross necropsy, histopathology, and pathogen screening. We estimated P. tenuis-induced mortality over time and developed temporal models to better understand patterns and drivers of P. tenuis-induced mortalities in these animals. During the period under examination, 5,617 goats, sheep, llamas and alpacas were necropsied, revealing an overall P. tenuis-induced mortality rate of 1.14% in the necropsy submission pool for these species. P. tenuis-induced mortality rates were highest in llamas (9.91%) and alpacas (5.33%) compared to sheep and goats (<1%), with rates in llamas and alpacas significantly higher than in sheep and goats. P. tenuis-induced mortalities exhibited one seasonal peak, around October to December. P. tenuis-induced mortality rates varied greatly between years, and have significantly increased over time. We also observed a positive correlation between summer temperature (range 20.4-22.4°C) and P. tenuis-induced mortality rates (range 0-3.9%), but not precipitation. This study demonstrates seasonal patterns and differences in mortality between alpacas, goats, llamas and sheep and helps us to better understand the epidemiology of P. tenuis mortality.

16.
Am J Primatol ; 84(4-5): e23379, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35389523

RESUMO

Infectious diseases have the potential to extirpate populations of great apes. As the interface between humans and great apes expands, zoonoses pose an increasingly severe threat to already endangered great ape populations. Despite recognition of the threat posed by human pathogens to great apes, health monitoring is only conducted for a small fraction of the world's wild great apes (and mostly those that are habituated) meaning that outbreaks of disease often go unrecognized and therefore unmitigated. This lack of surveillance (even in sites where capacity to conduct surveillance is present) is the most significant limiting factor in our ability to quickly detect and respond to emerging infectious diseases in great apes when they first appear. Accordingly, we must create a surveillance system that links disease outbreaks in humans and great apes in time and space, and enables veterinarians, clinicians, conservation managers, national decision makers, and the global health community to respond quickly to these events. Here, we review existing great ape health surveillance programs in African range habitats to identify successes, gaps, and challenges. We use these findings to argue that standardization of surveillance across sites and geographic scales, that monitors primate health in real-time and generates early warnings of disease outbreaks, is an efficient, low-cost step to conserve great ape populations. Such a surveillance program, which we call "Great Ape Health Watch" would lead to long-term improvements in outbreak preparedness, prevention, detection, and response, while generating valuable data for epidemiological research and sustainable conservation planning. Standardized monitoring of great apes would also make it easier to integrate with human surveillance activities. This approach would empower local stakeholders to link wildlife and human health, allowing for near real-time, bidirectional surveillance at the great ape-human interface.


Assuntos
Doenças dos Símios Antropoides , Doenças Transmissíveis Emergentes , Hominidae , Animais , Animais Selvagens , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/prevenção & controle , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
17.
Ecohealth ; 19(1): 135-144, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35192087

RESUMO

Goats browsing in woodlands, whether for livestock production goals or vegetation management (e.g., targeted grazing to control invasive plants), are at risk of meningeal worm (Parelaphostrongylus tenuis) infection. Indeed, up to 25% incidence has been observed in goats employed in vegetation management. Infection, which occurs via the consumption of an infected gastropod intermediate host, is potentially deadly in goats. We experimentally tested whether co-grazing with waterfowl could reduce goats' exposure via waterfowl consumption of gastropods. Gastropods were sampled in a deciduous woodland before and after the addition of goats alone, goats and waterfowl, or a control with no animal addition. We found that goats browsing on their own increased the abundance of P. tenuis intermediate hosts; however, when goats co-grazed with waterfowl, these increases were not observed. Importantly, waterfowl did not significantly affect overall gastropod abundance, richness, or diversity. Thus, waterfowl co-grazing may effectively reduce goat contact with infectious gastropods without detrimentally affecting the gastropod community. While co-grazing goats with waterfowl may decrease their P. tenuis exposure risk, additional research is needed to confirm whether waterfowl can actually lower P. tenuis incidence.


Assuntos
Cabras , Animais
18.
Am J Primatol ; 84(4-5): e23300, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34223656

RESUMO

Infectious disease outbreaks pose a significant threat to the conservation of chimpanzees (Pan troglodytes) and all threatened nonhuman primates. Characterizing and mitigating these threats to support the sustainability and welfare of wild populations is of the highest priority. In an attempt to understand and mitigate the risk of disease for the chimpanzees of Gombe National Park, Tanzania, we initiated a long-term health-monitoring program in 2004. While the initial focus was to expand the ongoing behavioral research on chimpanzees to include standardized data on clinical signs of health, it soon became evident that the scope of the project would ideally include diagnostic surveillance of pathogens for all primates (including people) and domestic animals, both within and surrounding the National Park. Integration of these data, along with in-depth post-mortem examinations, have allowed us to establish baseline health indicators to inform outbreak response. Here, we describe the development and expansion of the Gombe Ecosystem Health project, review major findings from the research and summarize the challenges and lessons learned over the past 16 years. We also highlight future directions and present the opportunities and challenges that remain when implementing studies of ecosystem health in a complex, multispecies environment.


Assuntos
Ecossistema , Pan troglodytes , Animais , Humanos , Estudos Longitudinais , Parques Recreativos , Primatas , Tanzânia/epidemiologia
19.
J Wildl Dis ; 58(1): 50-62, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34695201

RESUMO

Throughout North America, chronic wasting disease (CWD) has emerged as perhaps the greatest threat to wild cervid populations, including white-tailed deer (WTD; Odocoileus virginianus). White-tailed deer are the most sought-after big game species across North America with populations of various subspecies in nearly all Canadian provinces, the contiguous US, and Mexico. Documented CWD cases have dramatically increased across the WTD range since the mid-1990s, including in Minnesota, US. CWD surveillance in free-ranging WTD and other cervid populations mainly depends upon immunodetection methods such as immunohistochemistry and enzyme-linked immunosorbent assay (ELISA) on medial retropharyngeal lymph nodes and obex. More recent technologies centered on prion protein amplification methods of detection have shown promise as more sensitive and rapid CWD diagnostic tools. Here, we used blinded samples to test the efficacy of real-time quaking-induced conversion (RT-QuIC) in comparison to ELISA for screening tissues collected in 2019 from WTD in southeastern Minnesota, where CWD has been routinely detected since 2016. Our results support previous findings that RT-QuIC is a more sensitive tool for CWD detection than current antibody-based methods. Additionally, a CWD testing protocol that includes multiple lymphoid tissues (e.g., medial retropharyngeal lymph node, parotid lymph node, and palatine tonsil) per animal can effectively identify a greater number of CWD detections in a WTD population than a single sample type (e.g., medial retropharyngeal lymph nodes). These results show that the variability of CWD pathogenesis, sampling protocol, and testing platform must be considered for the effective detection and management of CWD throughout North America.


Assuntos
Cervos , Doença de Emaciação Crônica , Animais , Canadá , Espectroscopia de Ressonância de Spin Eletrônica/veterinária , Doença de Emaciação Crônica/diagnóstico , Doença de Emaciação Crônica/epidemiologia
20.
Sci Adv ; 7(52): eabj5944, 2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-34936450

RESUMO

Predators can modulate disease transmission within prey populations by influencing prey demography and behavior. Predator-prey dynamics can involve multiple species in heterogeneous landscapes; however, studies of predation on disease transmission rarely consider the role of landscapes or the transmission among diverse prey species (i.e., spillover). We used high-resolution habitat and movement data to model spillover risk of the brainworm parasite (Parelaphostrongylus tenuis) between two prey species [white-tailed deer (Odocoileus virginianus) and moose (Alces alces)], accounting for predator [gray wolf (Canis lupus)] presence and landscape configuration. Results revealed that spring migratory movements of cervid hosts increased parasite spillover risk from deer to moose, an effect tempered by changes in elevation, land cover, and wolf presence. Wolves induced host-species segregation, a nonlethal mechanism that modulated disease emergence by reducing spatiotemporal overlap between infected and susceptible prey, showing that wildlife disease dynamics may change with landscape disturbance and the loss of large carnivores.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...