Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 237(6): 2069-2087, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36527230

RESUMO

The representation of stomatal regulation of transpiration and CO2 assimilation is key to forecasting terrestrial ecosystem responses to global change. Given its importance in determining the relationship between forest productivity and climate, accurate and mechanistic model representation of the relationship between stomatal conductance (gs ) and assimilation is crucial. We assess possible physiological and mechanistic controls on the estimation of the g1 (stomatal slope, inversely proportional to water use efficiency) and g0 (stomatal intercept) parameters, using diurnal gas exchange surveys and leaf-level response curves of six tropical broadleaf evergreen tree species. g1 estimated from ex situ response curves averaged 50% less than g1 estimated from survey data. While g0 and g1 varied between leaves of different phenological stages, the trend was not consistent among species. We identified a diurnal trend associated with g1 and g0 that significantly improved model projections of diurnal trends in transpiration. The accuracy of modeled gs can be improved by accounting for variation in stomatal behavior across diurnal periods, and between measurement approaches, rather than focusing on phenological variation in stomatal behavior. Additional investigation into the primary mechanisms responsible for diurnal variation in g1 will be required to account for this phenomenon in land-surface models.


Assuntos
Ecossistema , Água , Água/fisiologia , Fotossíntese/fisiologia , Florestas , Folhas de Planta/fisiologia , Árvores/fisiologia , Transpiração Vegetal , Estômatos de Plantas/fisiologia
2.
Plant Cell Environ ; 46(3): 736-746, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36564901

RESUMO

Within vascular plants, the partitioning of hydraulic resistance along the soil-to-leaf continuum affects transpiration and its response to environmental conditions. In trees, the fractional contribution of leaf hydraulic resistance (Rleaf ) to total soil-to-leaf hydraulic resistance (Rtotal ), or fRleaf (=Rleaf /Rtotal ), is thought to be large, but this has not been tested comprehensively. We compiled a multibiome data set of fRleaf using new and previously published measurements of pressure differences within trees in situ. Across 80 samples, fRleaf averaged 0.51 (95% confidence interval [CI] = 0.46-0.57) and it declined with tree height. We also used the allometric relationship between field-based measurements of soil-to-leaf hydraulic conductance and laboratory-based measurements of leaf hydraulic conductance to compute the average fRleaf for 19 tree samples, which was 0.40 (95% CI = 0.29-0.56). The in situ technique produces a more accurate descriptor of fRleaf because it accounts for dynamic leaf hydraulic conductance. Both approaches demonstrate the outsized role of leaves in controlling tree hydrodynamics. A larger fRleaf may help stems from loss of hydraulic conductance. Thus, the decline in fRleaf with tree height would contribute to greater drought vulnerability in taller trees and potentially to their observed disproportionate drought mortality.


Assuntos
Solo , Árvores , Árvores/fisiologia , Água/fisiologia , Transpiração Vegetal/fisiologia , Folhas de Planta/fisiologia
3.
Ecol Lett ; 25(12): 2637-2650, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36257904

RESUMO

Considering the global intensification of aridity in tropical biomes due to climate change, we need to understand what shapes the distribution of drought sensitivity in tropical plants. We conducted a pantropical data synthesis representing 1117 species to test whether xylem-specific hydraulic conductivity (KS ), water potential at leaf turgor loss (ΨTLP ) and water potential at 50% loss of KS (ΨP50 ) varied along climate gradients. The ΨTLP and ΨP50 increased with climatic moisture only for evergreen species, but KS did not. Species with high ΨTLP and ΨP50 values were associated with both dry and wet environments. However, drought-deciduous species showed high ΨTLP and ΨP50 values regardless of water availability, whereas evergreen species only in wet environments. All three traits showed a weak phylogenetic signal and a short half-life. These results suggest strong environmental controls on trait variance, which in turn is modulated by leaf habit along climatic moisture gradients in the tropics.


Assuntos
Secas , Folhas de Planta , Clima Tropical , Filogenia , Folhas de Planta/fisiologia , Xilema
4.
New Phytol ; 231(5): 1798-1813, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33993520

RESUMO

Deep-water access is arguably the most effective, but under-studied, mechanism that plants employ to survive during drought. Vulnerability to embolism and hydraulic safety margins can predict mortality risk at given levels of dehydration, but deep-water access may delay plant dehydration. Here, we tested the role of deep-water access in enabling survival within a diverse tropical forest community in Panama using a novel data-model approach. We inversely estimated the effective rooting depth (ERD, as the average depth of water extraction), for 29 canopy species by linking diameter growth dynamics (1990-2015) to vapor pressure deficit, water potentials in the whole-soil column, and leaf hydraulic vulnerability curves. We validated ERD estimates against existing isotopic data of potential water-access depths. Across species, deeper ERD was associated with higher maximum stem hydraulic conductivity, greater vulnerability to xylem embolism, narrower safety margins, and lower mortality rates during extreme droughts over 35 years (1981-2015) among evergreen species. Species exposure to water stress declined with deeper ERD indicating that trees compensate for water stress-related mortality risk through deep-water access. The role of deep-water access in mitigating mortality of hydraulically-vulnerable trees has important implications for our predictive understanding of forest dynamics under current and future climates.


Assuntos
Secas , Árvores , Florestas , Folhas de Planta , Água , Abastecimento de Água , Xilema
5.
Biol Lett ; 16(8): 20200263, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32750268

RESUMO

Bark water vapour conductance (gbark) is a rarely considered functional trait. However, for the few tree species measured to date, it appears high enough to create stem water deficits associated with mortality during droughts, when access to water is limited. I tested whether gbark correlates with stem water deficit during drought conditions in two datasets of tropical trees: one of saplings in forest understories during an annual dry season and one of potted saplings in a shadehouse during extreme drought conditions. Among all 14 populations of eight species measured, gbark varied more than 10-fold (0.86-12.98 mmol m-2 s-1). In the forest understories, gbark was highly correlated with stem water deficit among four deciduous species, but not among evergreen species that likely maintained access to soil water. In the shadehouse, gbark was positively correlated with stem water deficit and mortality among all six species. Overall, tree species with higher gbark suffer higher stem water deficit when soil water is unavailable. Incorporating gbark into soil-plant-atmosphere hydrodynamic models may improve projections of plant mortality under drought conditions.


Assuntos
Secas , Árvores , Florestas , Casca de Planta , Folhas de Planta , Vapor , Clima Tropical , Água
6.
Glob Chang Biol ; 26(2): 823-839, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31482618

RESUMO

Stomata regulate CO2 uptake for photosynthesis and water loss through transpiration. The approaches used to represent stomatal conductance (gs ) in models vary. In particular, current understanding of drivers of the variation in a key parameter in those models, the slope parameter (i.e. a measure of intrinsic plant water-use-efficiency), is still limited, particularly in the tropics. Here we collected diurnal measurements of leaf gas exchange and leaf water potential (Ψleaf ), and a suite of plant traits from the upper canopy of 15 tropical trees in two contrasting Panamanian forests throughout the dry season of the 2016 El Niño. The plant traits included wood density, leaf-mass-per-area (LMA), leaf carboxylation capacity (Vc,max ), leaf water content, the degree of isohydry, and predawn Ψleaf . We first investigated how the choice of four commonly used leaf-level gs models with and without the inclusion of Ψleaf as an additional predictor variable influence the ability to predict gs , and then explored the abiotic (i.e. month, site-month interaction) and biotic (i.e. tree-species-specific characteristics) drivers of slope parameter variation. Our results show that the inclusion of Ψleaf did not improve model performance and that the models that represent the response of gs to vapor pressure deficit performed better than corresponding models that respond to relative humidity. Within each gs model, we found large variation in the slope parameter, and this variation was attributable to the biotic driver, rather than abiotic drivers. We further investigated potential relationships between the slope parameter and the six available plant traits mentioned above, and found that only one trait, LMA, had a significant correlation with the slope parameter (R2  = 0.66, n = 15), highlighting a potential path towards improved model parameterization. This study advances understanding of gs dynamics over seasonal drought, and identifies a practical, trait-based approach to improve modeling of carbon and water exchange in tropical forests.


Assuntos
Secas , Florestas , Fotossíntese , Folhas de Planta , Transpiração Vegetal , Estações do Ano , Árvores , Água
7.
Oecologia ; 191(3): 519-530, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31541317

RESUMO

Transpiration in humid tropical forests modulates the global water cycle and is a key driver of climate regulation. Yet, our understanding of how tropical trees regulate sap flux in response to climate variability remains elusive. With a progressively warming climate, atmospheric evaporative demand [i.e., vapor pressure deficit (VPD)] will be increasingly important for plant functioning, becoming the major control of plant water use in the twenty-first century. Using measurements in 34 tree species at seven sites across a precipitation gradient in the neotropics, we determined how the maximum sap flux velocity (vmax) and the VPD threshold at which vmax is reached (VPDmax) vary with precipitation regime [mean annual precipitation (MAP); seasonal drought intensity (PDRY)] and two functional traits related to foliar and wood economics spectra [leaf mass per area (LMA); wood specific gravity (WSG)]. We show that, even though vmax is highly variable within sites, it follows a negative trend in response to increasing MAP and PDRY across sites. LMA and WSG exerted little effect on vmax and VPDmax, suggesting that these widely used functional traits provide limited explanatory power of dynamic plant responses to environmental variation within hyper-diverse forests. This study demonstrates that long-term precipitation plays an important role in the sap flux response of humid tropical forests to VPD. Our findings suggest that under higher evaporative demand, trees growing in wetter environments in humid tropical regions may be subjected to reduced water exchange with the atmosphere relative to trees growing in drier climates.


Assuntos
Transpiração Vegetal , Árvores , Secas , Florestas , Pressão de Vapor , Água
8.
New Phytol ; 224(4): 1557-1568, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418863

RESUMO

Leaf mass per area (LMA) is a key plant trait, reflecting tradeoffs between leaf photosynthetic function, longevity, and structural investment. Capturing spatial and temporal variability in LMA has been a long-standing goal of ecological research and is an essential component for advancing Earth system models. Despite the substantial variation in LMA within and across Earth's biomes, an efficient, globally generalizable approach to predict LMA is still lacking. We explored the capacity to predict LMA from leaf spectra across much of the global LMA trait space, with values ranging from 17 to 393 g m-2 . Our dataset contained leaves from a wide range of biomes from the high Arctic to the tropics, included broad- and needleleaf species, and upper- and lower-canopy (i.e. sun and shade) growth environments. Here we demonstrate the capacity to rapidly estimate LMA using only spectral measurements across a wide range of species, leaf age and canopy position from diverse biomes. Our model captures LMA variability with high accuracy and low error (R2  = 0.89; root mean square error (RMSE) = 15.45 g m-2 ). Our finding highlights the fact that the leaf economics spectrum is mirrored by the leaf optical spectrum, paving the way for this technology to predict the diversity of LMA in ecosystems across global biomes.


Assuntos
Modelos Biológicos , Folhas de Planta/química , Folhas de Planta/fisiologia , Regiões Árticas , Bases de Dados Factuais , Ecossistema , Modelos Estatísticos , Análise Espaço-Temporal , Análise Espectral/métodos , Clima Tropical
9.
New Phytol ; 224(2): 663-674, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31245836

RESUMO

Understanding the pronounced seasonal and spatial variation in leaf carboxylation capacity (Vc,max ) is critical for determining terrestrial carbon cycling in tropical forests. However, an efficient and scalable approach for predicting Vc,max is still lacking. Here the ability of leaf spectroscopy for rapid estimation of Vc,max was tested. Vc,max was estimated using traditional gas exchange methods, and measured reflectance spectra and leaf age in leaves sampled from tropical forests in Panama and Brazil. These data were used to build a model to predict Vc,max from leaf spectra. The results demonstrated that leaf spectroscopy accurately predicts Vc,max of mature leaves in Panamanian tropical forests (R2  = 0.90). However, this single-age model required recalibration when applied to broader leaf demographic classes (i.e. immature leaves). Combined use of spectroscopy models for Vc,max and leaf age enabled construction of the Vc,max -age relationship solely from leaf spectra, which agreed with field observations. This suggests that the spectroscopy technique can capture the seasonal variability in Vc,max , assuming sufficient sampling across diverse species, leaf ages and canopy environments. This finding will aid development of remote sensing approaches that can be used to characterize Vc,max in moist tropical forests and enable an efficient means to parameterize and evaluate terrestrial biosphere models.


Assuntos
Ecossistema , Florestas , Modelos Biológicos , Folhas de Planta/fisiologia , Análise Espectral/métodos , Transpiração Vegetal , Estações do Ano , Especificidade da Espécie , Fatores de Tempo , Clima Tropical
10.
Glob Chang Biol ; 25(10): 3395-3405, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31070834

RESUMO

Forest leaf area has enormous leverage on the carbon cycle because it mediates both forest productivity and resilience to climate extremes. Despite widespread evidence that trees are capable of adjusting to changes in environment across both space and time through modifying carbon allocation to leaves, many vegetation models use fixed carbon allocation schemes independent of environment, which introduces large uncertainties into predictions of future forest responses to atmospheric CO2 fertilization and anthropogenic climate change. Here, we develop an optimization-based model, whereby tree carbon allocation to leaves is an emergent property of environment and plant hydraulic traits. Using a combination of meta-analysis, observational datasets, and model predictions, we find strong evidence that optimal hydraulic-carbon coupling explains observed patterns in leaf allocation across large environmental and CO2 concentration gradients. Furthermore, testing the sensitivity of leaf allocation strategy to a diversity in hydraulic and economic spectrum physiological traits, we show that plant hydraulic traits in particular have an enormous impact on the global change response of forest leaf area. Our results provide a rigorous theoretical underpinning for improving carbon cycle predictions through advancing model predictions of leaf area, and underscore that tree-level carbon allocation to leaves should be derived from first principles using mechanistic plant hydraulic processes in the next generation of vegetation models.


Assuntos
Carbono , Árvores , Ciclo do Carbono , Florestas , Folhas de Planta
11.
Plant Cell Environ ; 42(5): 1705-1714, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30537216

RESUMO

Nonstructural carbohydrates (NSCs) are essential for maintenance of plant metabolism and may be sensitive to short- and long-term climatic variation. NSC variation in moist tropical forests has rarely been studied, so regulation of NSCs in these systems is poorly understood. We measured foliar and branch NSC content in 23 tree species at three sites located across a large precipitation gradient in Panama during the 2015-2016 El Niño to examine how short- and long-term climatic variation impact carbohydrate dynamics. There was no significant difference in total NSCs as the drought progressed (leaf P = 0.32, branch P = 0.30) nor across the rainfall gradient (leaf P = 0.91, branch P = 0.96). Foliar soluble sugars decreased while starch increased over the duration of the dry period, suggesting greater partitioning of NSCs to storage than metabolism or transport as drought progressed. There was a large variation across species at all sites, but total foliar NSCs were positively correlated with leaf mass per area, whereas branch sugars were positively related to leaf temperature and negatively correlated with daily photosynthesis and wood density. The NSC homoeostasis across a wide range of conditions suggests that NSCs are an allocation priority in moist tropical forests.


Assuntos
Secas , El Niño Oscilação Sul , Amido/metabolismo , Açúcares/metabolismo , Árvores/metabolismo , Carboidratos/fisiologia , Florestas , Panamá , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Estações do Ano , Clima Tropical , Madeira/metabolismo
12.
Ecol Lett ; 21(7): 968-977, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29687543

RESUMO

Stomatal response to environmental conditions forms the backbone of all ecosystem and carbon cycle models, but is largely based on empirical relationships. Evolutionary theories of stomatal behaviour are critical for guarding against prediction errors of empirical models under future climates. Longstanding theory holds that stomata maximise fitness by acting to maintain constant marginal water use efficiency over a given time horizon, but a recent evolutionary theory proposes that stomata instead maximise carbon gain minus carbon costs/risk of hydraulic damage. Using data from 34 species that span global forest biomes, we find that the recent carbon-maximisation optimisation theory is widely supported, revealing that the evolution of stomatal regulation has not been primarily driven by attainment of constant marginal water use efficiency. Optimal control of stomata to manage hydraulic risk is likely to have significant consequences for ecosystem fluxes during drought, which is critical given projected intensification of the global hydrological cycle.


Assuntos
Secas , Estômatos de Plantas , Ecossistema , Estômatos de Plantas/fisiologia , Água , Ciclo Hidrológico
13.
PLoS One ; 12(10): e0185481, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023453

RESUMO

Climate change is expected to lead to increases in drought frequency and severity, with deleterious effects on many ecosystems. Stomatal responses to changing environmental conditions form the backbone of all ecosystem models, but are based on empirical relationships and are not well-tested during drought conditions. Here, we use a dataset of 34 woody plant species spanning global forest biomes to examine the effect of leaf water potential on stomatal conductance and test the predictive accuracy of three major stomatal models and a recently proposed model. We find that current leaf-level empirical models have consistent biases of over-prediction of stomatal conductance during dry conditions, particularly at low soil water potentials. Furthermore, the recently proposed stomatal conductance model yields increases in predictive capability compared to current models, and with particular improvement during drought conditions. Our results reveal that including stomatal sensitivity to declining water potential and consequent impairment of plant water transport will improve predictions during drought conditions and show that many biomes contain a diversity of plant stomatal strategies that range from risky to conservative stomatal regulation during water stress. Such improvements in stomatal simulation are greatly needed to help unravel and predict the response of ecosystems to future climate extremes.


Assuntos
Fotossíntese/fisiologia , Folhas de Planta/fisiologia , Estômatos de Plantas/fisiologia , Transpiração Vegetal/fisiologia , Ciclo Hidrológico , Água/química , Mudança Climática , Ecossistema
14.
Tree Physiol ; 37(4): 469-480, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28338739

RESUMO

Trees generally maintain a small safety margin between the stem water potential (Ψstem) reached during seasonal droughts and the Ψstem associated with their mortality. This pattern may indicate that species face similar mortality risk during extreme droughts. However, if tree species vary in their ability to regulate Ψstem, then safety margins would poorly predict drought mortality. To explore variation among species in Ψstem regulation, I subjected potted saplings of six tropical tree species to extreme drought and compared their responses with well-watered plants and pretreatment reference plants. In the drought treatment, soil water potential reached <-10 MPa, yet three species, Bursera simaruba (L.) Sarg., Cavanillesia platanifolia (Bonpl.) Kunth and Cedrela odorata L. had 100% survival and maintained Ψstem near -1 MPa (i.e., desiccation-avoiding species). Three other species, Cojoba rufescens (Benth.) Britton and Rose, Genipa americana L. and Hymenaea courbaril L. had 50%, 0% and 25% survival, respectively, and survivors had Ψstem <-6 MPa (i.e., desiccation-susceptible species). The desiccation-avoiding species had lower relative water content (RWC) in all organs and tissues (root, stem, bark and xylem) in the drought treatment than in the reference plants (means 72.0-90.4% vs 86.9-97.9%), but the survivors of the desiccation-susceptible C. rufescens had much lower RWC in the drought treatment (44.5-72.1%). Among the reference plants, the desiccation-avoiding species had lower tissue density, leaf-mass fraction and lateral-root surface area (LRA) than the desiccation-susceptible species. Additionally, C. platanifolia and C. odorata had reduced LRA in the drought treatment, which may slow water loss into dry soil. Together, these results suggest that the ability to regulate Ψstem during extreme drought is associated with functional traits that favor retention of stored water and that safety margins during seasonal drought poorly predict survival during extreme drought.


Assuntos
Secas , Árvores/fisiologia , Água/fisiologia , Casca de Planta/fisiologia , Raízes de Plantas/fisiologia , Caules de Planta/fisiologia , Xilema/fisiologia
15.
New Phytol ; 212(4): 1007-1018, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27373446

RESUMO

During droughts, leaves are predicted to act as 'hydraulic fuses' by shedding when plants reach critically low water potential (Ψplant ), thereby slowing water loss, stabilizing Ψplant and protecting against cavitation-induced loss of stem hydraulic conductivity (Ks ). We tested these predictions among trees in seasonally dry tropical forests, where leaf shedding is common, yet variable, among species. We tracked leaf phenology, Ψplant and Ks in saplings of six tree species distributed across two forests. Species differed in their timing and extent of leaf shedding, yet converged in shedding leaves as they approached the Ψplant value associated with a 50% loss of Ks and at which their model-estimated maximum sustainable transpiration rate approached zero. However, after shedding all leaves, the Ψplant value of one species, Genipa americana, continued to decline, indicating that water loss continued after leaf shedding. Ks was highly variable among saplings within species and seasons, suggesting a minimal influence of seasonal drought on Ks . Hydraulic limits appear to drive diverse patterns of leaf shedding among tropical trees, supporting the hydraulic fuse hypothesis. However, leaf shedding is not universally effective at stabilizing Ψplant , suggesting that the main function of drought deciduousness may vary among species.


Assuntos
Secas , Modelos Biológicos , Folhas de Planta/fisiologia , Caules de Planta/fisiologia , Estações do Ano , Gases/metabolismo , Folhas de Planta/anatomia & histologia , Caules de Planta/anatomia & histologia , Estômatos de Plantas/fisiologia , Especificidade da Espécie , Fatores de Tempo , Árvores/fisiologia , Água/fisiologia
16.
New Phytol ; 212(3): 577-589, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27329266

RESUMO

Ecosystem models have difficulty predicting plant drought responses, partially from uncertainty in the stomatal response to water deficits in soil and atmosphere. We evaluate a 'supply-demand' theory for water-limited stomatal behavior that avoids the typical scaffold of empirical response functions. The premise is that canopy water demand is regulated in proportion to threat to supply posed by xylem cavitation and soil drying. The theory was implemented in a trait-based soil-plant-atmosphere model. The model predicted canopy transpiration (E), canopy diffusive conductance (G), and canopy xylem pressure (Pcanopy ) from soil water potential (Psoil ) and vapor pressure deficit (D). Modeled responses to D and Psoil were consistent with empirical response functions, but controlling parameters were hydraulic traits rather than coefficients. Maximum hydraulic and diffusive conductances and vulnerability to loss in hydraulic conductance dictated stomatal sensitivity and hence the iso- to anisohydric spectrum of regulation. The model matched wide fluctuations in G and Pcanopy across nine data sets from seasonally dry tropical forest and piñon-juniper woodland with < 26% mean error. Promising initial performance suggests the theory could be useful in improving ecosystem models. Better understanding of the variation in hydraulic properties along the root-stem-leaf continuum will simplify parameterization.


Assuntos
Clima , Modelos Biológicos , Estômatos de Plantas/fisiologia , Água/fisiologia , Difusão , Secas , Umidade , Transpiração Vegetal/fisiologia , Solo/química , Xilema/fisiologia
17.
Oecologia ; 179(4): 925-36, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26025573

RESUMO

Tree species in seasonally dry tropical forests likely vary in their drought-survival mechanisms. Drought-deciduousness, which reduces water loss, and low wood density, which may permit dependence on stored water, are considered key traits. For saplings of six species at two distinct sites, we studied these and two associated traits: the seasonal amount of water released per stem volume ("water released") and the hydraulic capacitance of the stem (C). Two deciduous species with low stem density, Cavanillesia platanifolia and Bursera simaruba, had high C and high dry-season stem water potential (Ψ(stem)), but differed in dry-season water released. C. platanifolia did not use stored water during the dry season whereas B. simaruba, in a drier forest, released stored water. In both, water released was highest while flushing leaves, suggesting that stored water supports leaf flushing. In contrast, two deciduous species with intermediate stem density, Annona hayesii and Genipa americana, had intermediate C, low dry-season Ψ(stem), and high seasonal change in water released. Meanwhile, two evergreen species with intermediate stem density, Cojoba rufescens and Astronium graveolens, had relatively low C, low dry-season Ψ(stem), and intermediate seasonal change in water released. Thus, at least three, distinct stored-water-use strategies were observed. Additionally, bark relative water content (RWC) decreased along with Ψ(stem) during the dry season while xylem RWC did not change, suggesting that bark-stored water buffers Ψ(stem) seasonally. Together these results suggest that seasonal use of stored water and change in Ψ(stem) are associated with functional groups that are characterized by combinations of deciduousness and stem density.


Assuntos
Secas , Florestas , Árvores/crescimento & desenvolvimento , Clima Tropical , Água/metabolismo , Annona/crescimento & desenvolvimento , Annona/metabolismo , Bursera/crescimento & desenvolvimento , Bursera/metabolismo , Gardenia/crescimento & desenvolvimento , Gardenia/metabolismo , Malvaceae/crescimento & desenvolvimento , Malvaceae/metabolismo , Panamá , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo , Estações do Ano , Árvores/metabolismo , Xilema/crescimento & desenvolvimento , Xilema/metabolismo
18.
Ecology ; 87(12): 3058-69, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17249231

RESUMO

We surveyed Lepidoptera found on 11 species of Inga (Fabaceae:Mimosoideae) co-existing on Barro Colorado Island, Panama, to evaluate factors influencing diet choice. Of the 47 species of caterpillars (747 individuals) recorded, each fed on a distinct set of Inga. In the field, 96% of the individuals were found on young leaves. Growth rates of caterpillars that were fed leaves in the laboratory were 60% higher on young leaves compared to mature leaves. When caterpillars were fed leaves of nonhost Inga, they grew more slowly. These data provide support for a link between preference and performance. However, among hosts on which larvae normally occurred, faster growth rates were not associated with greater host electivity (the proportion of larvae found on each host species in the field, corrected for host abundance). Growth rates on normal hosts were positively correlated with leaf expansion rates of the host, and fast expansion was associated with leaves with higher nutritional content. Detailed studies on a gelechiid leaf roller, the species with the largest diet breadth, allowed us to assess the importance of factors other than growth that could influence diet electivity. This species showed a 1.7-fold difference in growth rate among Inga hosts and faster growth on species with fast-expanding leaves. However, there was no correlation between caterpillar growth rate and abundance on different host species. Instead, abundance of the gelechiid on each Inga species was significantly correlated with the temporal predictability of food (synchrony of leaf flushing) and was negatively correlated with competition (amount of leaf area removed by species other than the gelechiid). Although rates of parasitism were high (23-43%), there were no differences among hosts. Parasitism was also not related to measures of escape, such as growth rates of caterpillars, leaf expansion rates, and synchrony of leaf production. Together, food availability, parasitism, and competition explained 84% of the variation in host preference by the gelechiid. We suggest that these ecological interactions may be particularly important in determining diet choice initially and that preferences may be reinforced by subsequent divergence in host chemistry and/or the herbivore's ability to tolerate the secondary metabolites.


Assuntos
Fabaceae/parasitologia , Preferências Alimentares/fisiologia , Larva/fisiologia , Lepidópteros/fisiologia , Folhas de Planta/parasitologia , Animais , Comportamento Competitivo/fisiologia , Ecossistema , Fabaceae/fisiologia , Interações Hospedeiro-Parasita/fisiologia , Larva/crescimento & desenvolvimento , Larva/parasitologia , Lepidópteros/crescimento & desenvolvimento , Lepidópteros/parasitologia , Folhas de Planta/fisiologia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...