Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
J Genet Couns ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38240170

RESUMO

Congenital disorders of glycosylation (CDGs) are a genetically and clinically diverse group of disorders that arise as a result of defects within glycosylation synthetic pathways. CDGs are caused by pathogenic variants in many different genes in the glycosylation network. With over 160 different CDG types currently identified and a vast range of severity and presentations existing within and across those types, the road to a CDG diagnosis is often lengthy and complicated. The perils of this arduous CDG diagnostic odyssey are fraught with various genetic counseling uncertainties: (1) confusion about family planning, (2) queries about inheritance, (3) managing treatment, and (4) dealing with the uncertainty of rare diseases. Thus, the role of the genetic counselor is paramount in helping affected individuals and their families navigate these genetic counseling complexities. Case examples of common genetic counseling difficulties for CDGs are outlined, providing clinical applications of what CDG presentations, diagnostic processes, and common difficulties look like. Information on the nomenclature, incidence, prevalence, diagnostic testing, treatment, and management of CDGs are also discussed to provide a comprehensive summary of CDGs for genetic counselors, and subsequently to affected individuals and their families.

2.
Mol Genet Metab ; 140(3): 107707, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37883914

RESUMO

PURPOSE: The NIH Undiagnosed Diseases Program (UDP) aims to provide diagnoses to patients who have previously received exhaustive evaluations yet remain undiagnosed. Patients undergo procedural anesthesia for deep phenotyping for analysis with genomic testing. METHODS: A retrospective chart review was performed to determine the safety and benefit of procedural anesthesia in pediatric patients in the UDP. Adverse perioperative events were classified as anesthesia-related complications or peri-procedural complications. The contribution of procedures performed under anesthesia to arriving at a diagnosis was also determined. RESULTS: From 2008 to 2020, 249 pediatric patients in the UDP underwent anesthesia for diagnostic procedures. The majority had a severe systemic disease (American Society for Anesthesiology status III, 79%) and/or a neurologic condition (91%). Perioperative events occurred in 45 patients; six of these were attributed to anesthesia. All patients recovered fully without sequelae. Nearly half of the 249 patients (49%) received a diagnosis, and almost all these diagnoses (88%) took advantage of information gleaned from procedures performed under anesthesia. CONCLUSIONS: The benefits of anesthesia involving multiple diagnostic procedures in a well-coordinated, multidisciplinary, research setting, such as in the pediatric UDP, outweigh the risks.


Assuntos
Anestesia , Anestesiologia , Doenças não Diagnosticadas , Criança , Humanos , Estados Unidos/epidemiologia , Doenças não Diagnosticadas/etiologia , Estudos Retrospectivos , Anestesia/efeitos adversos , Medição de Risco , Difosfato de Uridina
3.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-37586838

RESUMO

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Assuntos
Anormalidades Múltiplas , Doenças do Desenvolvimento Ósseo , Deficiência Intelectual , Anormalidades Dentárias , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Doenças do Desenvolvimento Ósseo/diagnóstico por imagem , Doenças do Desenvolvimento Ósseo/genética , Anormalidades Dentárias/diagnóstico por imagem , Anormalidades Dentárias/genética , Fácies , Fenótipo , Proteínas Repressoras/genética , Fatores de Transcrição , Neuroimagem
4.
EMBO Mol Med ; 15(5): e16775, 2023 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-37013609

RESUMO

Topoisomerase 3α (TOP3A) is an enzyme that removes torsional strain and interlinks between DNA molecules. TOP3A localises to both the nucleus and mitochondria, with the two isoforms playing specialised roles in DNA recombination and replication respectively. Pathogenic variants in TOP3A can cause a disorder similar to Bloom syndrome, which results from bi-allelic pathogenic variants in BLM, encoding a nuclear-binding partner of TOP3A. In this work, we describe 11 individuals from 9 families with an adult-onset mitochondrial disease resulting from bi-allelic TOP3A gene variants. The majority of patients have a consistent clinical phenotype characterised by bilateral ptosis, ophthalmoplegia, myopathy and axonal sensory-motor neuropathy. We present a comprehensive characterisation of the effect of TOP3A variants, from individuals with mitochondrial disease and Bloom-like syndrome, upon mtDNA maintenance and different aspects of enzyme function. Based on these results, we suggest a model whereby the overall severity of the TOP3A catalytic defect determines the clinical outcome, with milder variants causing adult-onset mitochondrial disease and more severe variants causing a Bloom-like syndrome with mitochondrial dysfunction in childhood.


Assuntos
Doenças Mitocondriais , Doenças Musculares , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Doenças Mitocondriais/genética , Síndrome , Instabilidade Genômica
5.
Neuromuscul Disord ; 33(3): 257-262, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774715

RESUMO

MYH2 encodes MyHCIIa, a myosin heavy chain found in fast type 2A fibers. Pathogenic variants in this gene have previously been implicated in dominant and recessive forms of myopathy. Three individuals reported here are part of a family in which four generations of individuals are affected by a slowly progressive, predominantly proximal myopathy in an autosomal dominant inheritance pattern. Affected individuals in this family lacked classic features of an MYH2-associated myopathy such as congenital contractures and ophthalmoplegia. A novel variant, MYH2 c.5673+1G>C, was detected in the proband and subsequently found to segregate with disease in five additional family members. Further studies demonstrated that this variant affects splicing, resulting in novel transcripts. These data and muscle biopsy findings in the proband, indicate that this family's MYH2 variant is causative of their myopathy, adding to our understanding of the clinical and molecular characteristics of the disease.


Assuntos
Contratura , Doenças Musculares , Humanos , Doenças Musculares/genética , Família , Músculos/patologia , Cadeias Pesadas de Miosina/genética
6.
J Inherit Metab Dis ; 46(2): 326-334, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36719165

RESUMO

Congenital disorders of glycosylation (CDG) and Niemann-Pick type C (NPC) disease are inborn errors of metabolism that can both present with infantile-onset severe liver disease and other multisystemic manifestations. Plasma bile acid and N-palmitoyl-O-phosphocholineserine (PPCS) are screening biomarkers with proposed improved sensitivity and specificity for NPC. We report an infant with ATP6AP1-CDG who presented with cholestatic liver failure and elevated plasma oxysterols and bile acid, mimicking NPC clinically and biochemically. On further investigation, PPCS, but not the bile acid derivative N-(3ß,5α,6ß-trihydroxy-cholan-24-oyl) glycine (TCG), were elevated in plasma samples from individuals with ATP6AP1-, ALG1-, ALG8-, and PMM2-CDG. These findings highlight the importance of keeping CDG within the diagnostic differential when evaluating children with early onset severe liver disease and elevated bile acid or PPCS to prevent delayed diagnosis and treatment.


Assuntos
Defeitos Congênitos da Glicosilação , Doença de Niemann-Pick Tipo C , Oxisteróis , ATPases Vacuolares Próton-Translocadoras , Lactente , Criança , Humanos , Glicosilação , Ácidos e Sais Biliares , Hidrolases
7.
Genet Med ; 25(1): 37-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36322149

RESUMO

PURPOSE: Biallelic PIGN variants have been described in Fryns syndrome, multiple congenital anomalies-hypotonia-seizure syndrome (MCAHS), and neurologic phenotypes. The full spectrum of clinical manifestations in relation to the genotypes is yet to be reported. METHODS: Genotype and phenotype data were collated and analyzed for 61 biallelic PIGN cases: 21 new and 40 previously published cases. Functional analysis was performed for 2 recurrent variants (c.2679C>G p.Ser893Arg and c.932T>G p.Leu311Trp). RESULTS: Biallelic-truncating variants were detected in 16 patients-10 with Fryns syndrome, 1 with MCAHS1, 2 with Fryns syndrome/MCAHS1, and 3 with neurologic phenotype. There was an increased risk of prenatal or neonatal death within this group (6 deaths were in utero or within 2 months of life; 6 pregnancies were terminated). Incidence of polyhydramnios, congenital anomalies (eg, diaphragmatic hernia), and dysmorphism was significantly increased. Biallelic missense or mixed genotype were reported in the remaining 45 cases-32 showed a neurologic phenotype and 12 had MCAHS1. No cases of diaphragmatic hernia or abdominal wall defects were seen in this group except patient 1 in which we found the missense variant p.Ser893Arg to result in functionally null alleles, suggesting the possibility of an undescribed functionally important region in the final exon. For all genotypes, there was complete penetrance for developmental delay and near-complete penetrance for seizures and hypotonia in patients surviving the neonatal period. CONCLUSION: We have expanded the described spectrum of phenotypes and natural history associated with biallelic PIGN variants. Our study shows that biallelic-truncating variants usually result in the more severe Fryns syndrome phenotype, but neurologic problems, such as developmental delay, seizures, and hypotonia, present across all genotypes. Functional analysis should be considered when the genotypes do not correlate with the predicted phenotype because there may be other functionally important regions in PIGN that are yet to be discovered.


Assuntos
Anormalidades Múltiplas , Defeitos Congênitos da Glicosilação , Epilepsia , Hérnia Diafragmática , Gravidez , Feminino , Humanos , Hipotonia Muscular/genética , Epilepsia/genética , Anormalidades Múltiplas/genética , Hérnia Diafragmática/genética , Convulsões/genética , Fenótipo , Estudos de Associação Genética , Síndrome
8.
Am J Med Genet A ; 191(2): 624-629, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36541585

RESUMO

Boucher-Neuhäuser syndrome (BNHS) is characterized by chorioretinal dystrophy, hypogonadotropic hypogonadism, and cerebellar dysfunction and atrophy. The disorder has been associated with biallelic pathogenic variants in the patatin-like phospholipase domain-containing protein 6 (PNPLA6) gene. We present an individual with a clinical diagnosis consistent with BNHS who lacked any PNPLA6 variants but on quartet family exome sequencing had a de novo variant in the hexokinase 1 (HK1) gene (NM_000188.2 [GRCh37/hg19]: g.71139826G>A, c.1240G>A, p.Gly414Arg), suggesting genetic heterogeneity for BNHS. Longitudinal follow-up indicated neurological deterioration, neuropsychiatric symptoms, and progressive cerebellar atrophy. The BNHS phenotype overlaps and expands the known HK1 genotypic and phenotypic spectrum. Individuals with variants in HK1 should undergo evaluation for hypogonadotropic hypogonadism, potentially amenable to treatment.


Assuntos
Hipogonadismo , Síndrome de Klinefelter , Ataxias Espinocerebelares , Humanos , Hexoquinase/genética , Ataxias Espinocerebelares/genética , Hipogonadismo/diagnóstico , Hipogonadismo/genética , Atrofia
9.
J Med Genet ; 2022 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790351

RESUMO

PURPOSE: To summarise the clinical, molecular and biochemical phenotype of mannosyl-oligosaccharide glucosidase-related congenital disorders of glycosylation (MOGS-CDG), which presents with variable clinical manifestations, and to analyse which clinical biochemical assay consistently supports diagnosis in individuals with bi-allelic variants in MOGS. METHODS: Phenotypic characterisation was performed through an international and multicentre collaboration. Genetic testing was done by exome sequencing and targeted arrays. Biochemical assays on serum and urine were performed to delineate the biochemical signature of MOGS-CDG. RESULTS: Clinical phenotyping revealed heterogeneity in MOGS-CDG, including neurological, immunological and skeletal phenotypes. Bi-allelic variants in MOGS were identified in 12 individuals from 11 families. The severity in each organ system was variable, without definite genotype correlation. Urine oligosaccharide analysis was consistently abnormal for all affected probands, whereas other biochemical analyses such as serum transferrin analysis was not consistently abnormal. CONCLUSION: The clinical phenotype of MOGS-CDG includes multisystemic involvement with variable severity. Molecular analysis, combined with biochemical testing, is important for diagnosis. In MOGS-CDG, urine oligosaccharide analysis via matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry can be used as a reliable biochemical test for screening and confirmation of disease.

10.
J Inherit Metab Dis ; 45(5): 969-980, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35716054

RESUMO

Congenital disorders of glycosylation are a continuously expanding group of monogenic disorders of glycoprotein and glycolipid glycan biosynthesis. These disorders mostly manifest with multisystem involvement. Individuals with ALG8-CDG commonly present with hypotonia, protein-losing enteropathy, and hepatic involvement. Here, we describe seven unreported individuals diagnosed with ALG8-CDG based on biochemical and molecular testing and we identify nine novel variants in ALG8, bringing the total to 26 individuals with ALG8-CDG in the medical literature. In addition to the typical multisystem involvement documented in ALG8-CDG, our cohort includes the two oldest patients reported and further expands the phenotype of ALG8-CDG to include stable intellectual disability, autism spectrum disorder and other neuropsychiatric symptoms. We further expand the clinical features in a variety of organ systems including ocular, musculoskeletal, dermatologic, endocrine, and cardiac abnormalities and suggest a comprehensive evaluation and monitoring strategy to improve clinical management.


Assuntos
Transtorno do Espectro Autista , Defeitos Congênitos da Glicosilação , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Glucosiltransferases/genética , Glicosilação , Humanos , Fenótipo
11.
J Inherit Metab Dis ; 45(5): 907-918, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35490291

RESUMO

Living with an undiagnosed medical condition places a tremendous burden on patients, their families, and their healthcare providers. The Undiagnosed Diseases Program (UDP) was established at the National Institutes of Health (NIH) in 2008 with the primary goals of providing a diagnosis for patients with mysterious conditions and advancing medical knowledge about rare and common diseases. The program reviews applications from referring clinicians for cases that are considered undiagnosed despite a thorough evaluation. Those that are accepted receive clinical evaluations involving deep phenotyping and genetic testing that includes exome and genomic sequencing. Selected candidate gene variants are evaluated by collaborators using functional assays. Since its inception, the UDP has received more than 4500 applications and has completed evaluations on nearly 1300 individuals. Here we present six cases that exemplify the discovery of novel disease mechanisms, the importance of deep phenotyping for rare diseases, and how genetic diagnoses have led to appropriate treatment. The creation of the Undiagnosed Diseases Network (UDN) in 2014 has substantially increased the number of patients evaluated and allowed for greater opportunities for data sharing. Expansion to the Undiagnosed Diseases Network International (UDNI) has the possibility to extend this reach even farther. Together, networks of undiagnosed diseases programs are powerful tools to advance our knowledge of pathophysiology, accelerate accurate diagnoses, and improve patient care for patients with rare conditions.


Assuntos
Doenças não Diagnosticadas , Exoma , Humanos , National Institutes of Health (U.S.) , Doenças Raras/diagnóstico , Doenças Raras/genética , Estados Unidos , Difosfato de Uridina
12.
Hypertension ; 79(1): 60-75, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34878901

RESUMO

Familial hyperkalemic hypertension is caused by pathogenic variants in genes of the CUL3 (cullin-3)-KLHL3 (kelch-like-family-member-3)-WNK (with no-lysine [K] kinase) pathway, manifesting clinically as hyperkalemia, metabolic acidosis, and high systolic blood pressure. The ubiquitin E3 ligase CUL3-KLHL3 targets WNK kinases for degradation to limit activation of the thiazide-sensitive NCC (Na-Cl cotransporter). All known variants in CUL3 lead to exon 9 skipping (CUL3Δ9) and typically result in severe familial hyperkalemic hypertension and growth disturbances in patients. Whether other variants in CUL3 cause familial hyperkalemic hypertension is unknown. Here, we identify a novel de novo heterozygous CUL3 variant (CUL3Δ474-477) in a pediatric familial hyperkalemic hypertension patient with multiple congenital anomalies and reveal molecular mechanisms by which CUL3Δ474-477 leads to dysregulation of the CUL3-KLHL3-WNK signaling axis. Using patient-derived urinary extracellular vesicles and dermal fibroblasts, in vitro assays, and cultured kidney cells, we demonstrate that CUL3Δ474-477 causes reduced total CUL3 levels due to increased autoubiquitination. The CUL3Δ474-477 that escapes autodegradation shows enhanced modification with NEDD8 (neural precursor cell expressed developmentally down-regulated protein 8) and increased formation of CUL3-KLHL3 complexes that are impaired in ubiquitinating WNK4. Proteomic analysis of CUL3 complexes revealed that, in addition to increased KLHL3 binding, the CUL3Δ474-477 variant also exhibits increased interactions with other BTB (Bric-a-brac, Tramtrack, and Broad complex) substrate adaptors, providing a rationale for the patient's diverse phenotypes. We conclude that the pathophysiological effects of CUL3Δ474-477 are caused by reduced CUL3 levels and formation of catalytically impaired CUL3 ligase complexes.


Assuntos
Proteínas Culina/genética , Pseudo-Hipoaldosteronismo/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Pré-Escolar , Proteínas Culina/metabolismo , Humanos , Masculino , Proteômica , Pseudo-Hipoaldosteronismo/metabolismo , Transdução de Sinais/genética
13.
PLoS Genet ; 17(11): e1009854, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34723967

RESUMO

The forkhead box (Fox) family of transcription factors are highly conserved and play essential roles in a wide range of cellular and developmental processes. We report an individual with severe neurological symptoms including postnatal microcephaly, progressive brain atrophy and global developmental delay associated with a de novo missense variant (M280L) in the FOXR1 gene. At the protein level, M280L impaired FOXR1 expression and induced a nuclear aggregate phenotype due to protein misfolding and proteolysis. RNAseq and pathway analysis showed that FOXR1 acts as a transcriptional activator and repressor with central roles in heat shock response, chaperone cofactor-dependent protein refolding and cellular response to stress pathways. Indeed, FOXR1 expression is increased in response to cellular stress, a process in which it directly controls HSPA6, HSPA1A and DHRS2 transcripts. The M280L mutant compromises FOXR1's ability to respond to stress, in part due to impaired regulation of downstream target genes that are involved in the stress response pathway. Quantitative PCR of mouse embryo tissues show Foxr1 expression in the embryonic brain. Using CRISPR/Cas9 gene editing, we found that deletion of mouse Foxr1 leads to a severe survival deficit while surviving newborn Foxr1 knockout mice have reduced body weight. Further examination of newborn Foxr1 knockout brains revealed a decrease in cortical thickness and enlarged ventricles compared to littermate wild-type mice, suggesting that loss of Foxr1 leads to atypical brain development. Combined, these results suggest FOXR1 plays a role in cellular stress response pathways and is necessary for normal brain development.


Assuntos
Encéfalo/crescimento & desenvolvimento , Fatores de Transcrição Forkhead/fisiologia , Estresse Fisiológico , Animais , Feminino , Fatores de Transcrição Forkhead/genética , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Fenótipo
15.
J Neurogenet ; 35(2): 74-83, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33970744

RESUMO

KCTD7 is a member of the potassium channel tetramerization domain-containing protein family and has been associated with progressive myoclonic epilepsy (PME), characterized by myoclonus, epilepsy, and neurological deterioration. Here we report four affected individuals from two unrelated families in which we identified KCTD7 compound heterozygous single nucleotide variants through exome sequencing. RNAseq was used to detect a non-annotated splicing junction created by a synonymous variant in the second family. Whole-cell patch-clamp analysis of neuroblastoma cells overexpressing the patients' variant alleles demonstrated aberrant potassium regulation. While all four patients experienced many of the common clinical features of PME, they also showed variable phenotypes not previously reported, including dysautonomia, brain pathology findings including a significantly reduced thalamus, and the lack of myoclonic seizures. To gain further insight into the pathogenesis of the disorder, zinc finger nucleases were used to generate kctd7 knockout zebrafish. Kctd7 homozygous mutants showed global dysregulation of gene expression and increased transcription of c-fos, which has previously been correlated with seizure activity in animal models. Together these findings expand the known phenotypic spectrum of KCTD7-associated PME, report a new animal model for future studies, and contribute valuable insights into the disease.


Assuntos
Epilepsias Mioclônicas Progressivas/genética , Canais de Potássio/genética , Animais , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Mutação , Epilepsias Mioclônicas Progressivas/fisiopatologia , Linhagem , Fenótipo , Peixe-Zebra
16.
Orphanet J Rare Dis ; 16(1): 20, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33413482

RESUMO

BACKGROUND: The congenital disorders of glycosylation (CDG) are a heterogeneous group of rare metabolic diseases with multi-system involvement. The liver phenotype of CDG varies not only according to the specific disorder, but also from patient to patient. In this study, we sought to identify common patterns of liver injury among patients with a broad spectrum of CDG, and to provide recommendations for follow-up in clinical practice. METHODS: Patients were enrolled in the Frontiers in Congenital Disorders of Glycosylation natural history study. We analyzed clinical history, molecular genetics, serum markers of liver injury, liver ultrasonography and transient elastography, liver histopathology (when available), and clinical scores of 39 patients with 16 different CDG types (PMM2-CDG, n = 19), with a median age of 7 years (range: 10 months to 65 years). For patients with disorders which are treatable by specific interventions, we have added a description of liver parameters on treatment. RESULTS: Our principal findings are (1) there is a clear pattern in the evolution of the hepatocellular injury markers alanine aminotransferase and aspartate aminotransferase according to age, especially in PMM2-CDG patients but also in other CDG-I, and that the cholangiocellular injury marker gamma-glutamyltransferase is not elevated in most patients, pointing to an exclusive hepatocellular origin of injury; (2) there is a dissociation between liver ultrasound and transient elastography regarding signs of liver fibrosis; (3) histopathological findings in liver tissue of PMM2-CDG patients include cytoplasmic glycogen deposits; and (4) most CDG types show more than one type of liver injury. CONCLUSIONS: Based on these findings, we recommend that all CDG patients have regular systematic, comprehensive screening for liver disease, including physical examination (for hepatomegaly and signs of liver failure), laboratory tests (serum alanine aminotransferase and aspartate aminotransferase), liver ultrasound (for steatosis and liver tumors), and liver elastography (for fibrosis).


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Defeitos Congênitos da Glicosilação/genética , Seguimentos , Glicosilação , Humanos , Lactente , Fígado/diagnóstico por imagem , Fígado/metabolismo
17.
Genet Med ; 23(2): 259-271, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33093671

RESUMO

PURPOSE: The NIH Undiagnosed Diseases Network (UDN) evaluates participants with disorders that have defied diagnosis, applying personalized clinical and genomic evaluations and innovative research. The clinical sites of the UDN are essential to advancing the UDN mission; this study assesses their contributions relative to standard clinical practices. METHODS: We analyzed retrospective data from four UDN clinical sites, from July 2015 to September 2019, for diagnoses, new disease gene discoveries and the underlying investigative methods. RESULTS: Of 791 evaluated individuals, 231 received 240 diagnoses and 17 new disease-gene associations were recognized. Straightforward diagnoses on UDN exome and genome sequencing occurred in 35% (84/240). We considered these tractable in standard clinical practice, although genome sequencing is not yet widely available clinically. The majority (156/240, 65%) required additional UDN-driven investigations, including 90 diagnoses that occurred after prior nondiagnostic exome sequencing and 45 diagnoses (19%) that were nongenetic. The UDN-driven investigations included complementary/supplementary phenotyping, innovative analyses of genomic variants, and collaborative science for functional assays and animal modeling. CONCLUSION: Investigations driven by the clinical sites identified diagnostic and research paradigms that surpass standard diagnostic processes. The new diagnoses, disease gene discoveries, and delineation of novel disorders represent a model for genomic medicine and science.


Assuntos
Doenças não Diagnosticadas , Animais , Genômica , Humanos , Doenças Raras/diagnóstico , Doenças Raras/genética , Estudos Retrospectivos , Sequenciamento do Exoma
18.
Genet Med ; 23(4): 740-750, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33239752

RESUMO

PURPOSE: In this study we investigate the disease etiology in 12 patients with de novo variants in FAR1 all resulting in an amino acid change at position 480 (p.Arg480Cys/His/Leu). METHODS: Following next-generation sequencing and clinical phenotyping, functional characterization was performed in patients' fibroblasts using FAR1 enzyme analysis, FAR1 immunoblotting/immunofluorescence, and lipidomics. RESULTS: All patients had spastic paraparesis and bilateral congenital/juvenile cataracts, in most combined with speech and gross motor developmental delay and truncal hypotonia. FAR1 deficiency caused by biallelic variants results in defective ether lipid synthesis and plasmalogen deficiency. In contrast, patients' fibroblasts with the de novo FAR1 variants showed elevated plasmalogen levels. Further functional studies in fibroblasts showed that these variants cause a disruption of the plasmalogen-dependent feedback regulation of FAR1 protein levels leading to uncontrolled ether lipid production. CONCLUSION: Heterozygous de novo variants affecting the Arg480 residue of FAR1 lead to an autosomal dominant disorder with a different disease mechanism than that of recessive FAR1 deficiency and a diametrically opposed biochemical phenotype. Our findings show that for patients with spastic paraparesis and bilateral cataracts, FAR1 should be considered as a candidate gene and added to gene panels for hereditary spastic paraplegia, cerebral palsy, and juvenile cataracts.


Assuntos
Aldeído Oxirredutases/genética , Éteres , Lipídeos , Paraplegia Espástica Hereditária/genética , Humanos , Fenótipo
19.
Am J Med Genet C Semin Med Genet ; 184(3): 618-630, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32866347

RESUMO

The spectrum of peroxisomal disorders is wide and comprises individuals that die in the first year of life, as well as people with sensorineural hearing loss, retinal dystrophy and amelogenesis imperfecta. In this article, we describe three patients; two diagnosed with Heimler syndrome and a third one with a mild-intermediate phenotype. We arrived at these diagnoses by conducting complete ophthalmic (National Eye Institute), auditory (National Institute of Deafness and Other Communication Disorders), and dental (National Institute of Dental and Craniofacial Research) evaluations, as well as laboratory and genetic testing. Retinal degeneration with macular cystic changes, amelogenesis imperfecta, and sensorineural hearing loss were features shared by the three patients. Patients A and C had pathogenic variants in PEX1 and Patient B, in PEX6. Besides analyzing these cases, we review the literature regarding mild peroxisomal disorders, their pathophysiology, genetics, differential diagnosis, diagnostic methods, and management. We suggest that peroxisomal disorders are considered in every child with sensorineural hearing loss and retinal degeneration. These patients should have a dental evaluation to rule out amelogenesis imperfecta as well as audiologic examination and laboratory testing including peroxisomal biomarkers and genetic testing. Appropriate diagnosis can lead to better genetic counseling and management of the associated comorbidities.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/genética , Amelogênese Imperfeita/genética , Perda Auditiva Neurossensorial/genética , Proteínas de Membrana/genética , Unhas Malformadas/genética , Transtornos Peroxissômicos/genética , Adolescente , Adulto , Amelogênese Imperfeita/complicações , Amelogênese Imperfeita/diagnóstico , Amelogênese Imperfeita/patologia , Criança , Feminino , Aconselhamento Genético , Perda Auditiva Neurossensorial/complicações , Perda Auditiva Neurossensorial/diagnóstico , Perda Auditiva Neurossensorial/patologia , Humanos , Masculino , Unhas Malformadas/complicações , Unhas Malformadas/diagnóstico , Unhas Malformadas/patologia , Linhagem , Transtornos Peroxissômicos/complicações , Transtornos Peroxissômicos/diagnóstico , Transtornos Peroxissômicos/patologia , Fenótipo , Degeneração Retiniana/diagnóstico , Degeneração Retiniana/genética , Degeneração Retiniana/patologia , Adulto Jovem
20.
J Inherit Metab Dis ; 43(6): 1333-1348, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32681751

RESUMO

Asparagine-linked glycosylation 13 homolog (ALG13) encodes a nonredundant, highly conserved, X-linked uridine diphosphate (UDP)-N-acetylglucosaminyltransferase required for the synthesis of lipid linked oligosaccharide precursor and proper N-linked glycosylation. De novo variants in ALG13 underlie a form of early infantile epileptic encephalopathy known as EIEE36, but given its essential role in glycosylation, it is also considered a congenital disorder of glycosylation (CDG), ALG13-CDG. Twenty-four previously reported ALG13-CDG cases had de novo variants, but surprisingly, unlike most forms of CDG, ALG13-CDG did not show the anticipated glycosylation defects, typically detected by altered transferrin glycosylation. Structural homology modeling of two recurrent de novo variants, p.A81T and p.N107S, suggests both are likely to impact the function of ALG13. Using a corresponding ALG13-deficient yeast strain, we show that expressing yeast ALG13 with either of the highly conserved hotspot variants rescues the observed growth defect, but not its glycosylation abnormality. We present molecular and clinical data on 29 previously unreported individuals with de novo variants in ALG13. This more than doubles the number of known cases. A key finding is that a vast majority of the individuals presents with West syndrome, a feature shared with other CDG types. Among these, the initial epileptic spasms best responded to adrenocorticotropic hormone or prednisolone, while clobazam and felbamate showed promise for continued epilepsy treatment. A ketogenic diet seems to play an important role in the treatment of these individuals.


Assuntos
Defeitos Congênitos da Glicosilação/genética , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/genética , Espasmos Infantis/genética , Biomarcadores , Pré-Escolar , Defeitos Congênitos da Glicosilação/diagnóstico , Dieta Cetogênica , Feminino , Glicosilação , Humanos , Lactente , Masculino , Mutação , N-Acetilglucosaminiltransferases/química , Espasmos Infantis/diagnóstico , Transferrina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...