Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(5)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38792591

RESUMO

BACKGROUND: Sarculator and Memorial Sloan Kettering Cancer Center (MSKCC) nomograms are freely available risk prediction scores for surgically treated patients with primary sarcomas. Due to the rarity of angiosarcomas, these scores have only been tested on small cohorts of angiosarcoma patients. In neither the original patient cohort upon which the Sarculator is based nor in subsequent studies was a distinction made between primary and secondary angiosarcomas, as the app is intended to be applied to primary sarcomas. Therefore, the objective of our investigation was to assess whether the Sarculator reveals a difference in prognosis and whether such differentiation aligns with actual clinical data. PATIENTS AND METHODS: Thirty-one patients with primary or secondary soft tissue angiosarcoma, treated at our Sarcoma Center from 2001 to 2023, were included in the study. Actual survival rates were compared with nomogram-derived data for predicted 5-year survival (Sarculator), as well as 4-, 8- and 12-year sarcoma-specific death probabilities (MSKCC). Harrell's c-index was utilized to assess predictive validity. RESULTS: In total, 31 patients were analyzed. The actual overall 5-year survival was 22.57% with a predicted 5-year survival rate of 25.97%, and the concordance index was 0.726 for the entire cohort. The concordance index results from MSKCC for angiosarcoma patients were below 0.7 indicating limited predictive accuracy in this cohort, particularly when compared to Sarculator. SUMMARY: Nomogram-based predictive models are valuable tools in clinical practice for rapidly assessing prognosis. They can streamline the decision-making process for adjuvant treatments and improve patient counselling especially in the treatment of rare and complicated tumor entities such as angiosarcomas.

2.
J Med Chem ; 67(9): 7359-7372, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38670943

RESUMO

Systematic analysis of molecular recognition is critical for understanding the biological function of macromolecules. For the immunomodulatory protein D-dopachrome tautomerase (D-DT), the mechanism of protein-ligand interactions is poorly understood. Here, 17 carefully designed protein variants and wild type (WT) D-DT were interrogated with an array of complementary techniques to elucidate the structural basis of ligand recognition. Utilization of a substrate and two selective inhibitors with distinct binding profiles offered previously unseen mechanistic insights into D-DT-ligand interactions. Our results demonstrate that the C-terminal region serves a key role in molecular recognition via regulation of the active site opening, protein-ligand interactions, and conformational flexibility of the pocket's environment. While our study is the first comprehensive analysis of molecular recognition for D-DT, the findings reported herein promote the understanding of protein functionality and enable the design of new structure-based drug discovery projects.


Assuntos
Ligação Proteica , Ligantes , Modelos Moleculares , Humanos , Domínio Catalítico , Relação Estrutura-Atividade
3.
Sci Adv ; 10(13): eadk7201, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38536910

RESUMO

Enzymes populate ensembles of structures necessary for catalysis that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography at an x-ray free electron laser to observe catalysis in a designed mutant isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations, and formation of the thioimidate intermediate selects for catalytically competent substates. The influence of cysteine ionization on the ICH ensemble is validated by determining structures of the enzyme at multiple pH values. Large molecular dynamics simulations in crystallo and time-resolved electron density maps show that Asp17 ionizes during catalysis and causes conformational changes that propagate across the dimer, permitting water to enter the active site for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Cristalografia por Raios X , Proteínas/química , Catálise , Conformação Proteica , Hidrolases
4.
Nat Chem ; 15(11): 1549-1558, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37723259

RESUMO

Understanding and controlling protein motion at atomic resolution is a hallmark challenge for structural biologists and protein engineers because conformational dynamics are essential for complex functions such as enzyme catalysis and allosteric regulation. Time-resolved crystallography offers a window into protein motions, yet without a universal perturbation to initiate conformational changes the method has been limited in scope. Here we couple a solvent-based temperature jump with time-resolved crystallography to visualize structural motions in lysozyme, a dynamic enzyme. We observed widespread atomic vibrations on the nanosecond timescale, which evolve on the submillisecond timescale into localized structural fluctuations that are coupled to the active site. An orthogonal perturbation to the enzyme, inhibitor binding, altered these dynamics by blocking key motions that allow energy to dissipate from vibrations into functional movements linked to the catalytic cycle. Because temperature jump is a universal method for perturbing molecular motion, the method demonstrated here is broadly applicable for studying protein dynamics.


Assuntos
Proteínas , Cristalografia por Raios X , Modelos Moleculares , Temperatura , Proteínas/química , Conformação Molecular , Conformação Proteica
5.
bioRxiv ; 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37645800

RESUMO

Enzymes populate ensembles of structures with intrinsically different catalytic proficiencies that are difficult to experimentally characterize. We use time-resolved mix-and-inject serial crystallography (MISC) at an X-ray free electron laser (XFEL) to observe catalysis in a designed mutant (G150T) isocyanide hydratase (ICH) enzyme that enhances sampling of important minor conformations. The active site exists in a mixture of conformations and formation of the thioimidate catalytic intermediate selects for catalytically competent substates. A prior proposal for active site cysteine charge-coupled conformational changes in ICH is validated by determining structures of the enzyme over a range of pH values. A combination of large molecular dynamics simulations of the enzyme in crystallo and time-resolved electron density maps shows that ionization of the general acid Asp17 during catalysis causes additional conformational changes that propagate across the dimer interface, connecting the two active sites. These ionization-linked changes in the ICH conformational ensemble permit water to enter the active site in a location that is poised for intermediate hydrolysis. ICH exhibits a tight coupling between ionization of active site residues and catalysis-activated protein motions, exemplifying a mechanism of electrostatic control of enzyme dynamics.

6.
Acta Crystallogr D Struct Biol ; 79(Pt 1): 50-65, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36601807

RESUMO

It is investigated whether molecular-dynamics (MD) simulations can be used to enhance macromolecular crystallography (MX) studies. Historically, protein crystal structures have been described using a single set of atomic coordinates. Because conformational variation is important for protein function, researchers now often build models that contain multiple structures. Methods for building such models can fail, however, in regions where the crystallographic density is difficult to interpret, for example at the protein-solvent interface. To address this limitation, a set of MD-MX methods that combine MD simulations of protein crystals with conventional modeling and refinement tools have been developed. In an application to a cyclic adenosine monophosphate-dependent protein kinase at room temperature, the procedure improved the interpretation of ambiguous density, yielding an alternative water model and a revised protein model including multiple conformations. The revised model provides mechanistic insights into the catalytic and regulatory interactions of the enzyme. The same methods may be used in other MX studies to seek mechanistic insights.


Assuntos
Simulação de Dinâmica Molecular , Proteínas , Conformação Proteica , Proteínas/química , Solventes/química , Cristalografia por Raios X
7.
Cancers (Basel) ; 14(9)2022 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-35565214

RESUMO

Seventy percent of patients with colorectal cancer develop liver metastases (CRLM), which are a decisive factor in cancer progression. Therapy outcome is largely influenced by tumor heterogeneity, but the intra- and inter-patient heterogeneity of CRLM has been poorly studied. In particular, the contribution of the WNT and EGFR pathways, which are both frequently deregulated in colorectal cancer, has not yet been addressed in this context. To this end, we comprehensively characterized normal liver tissue and eight CRLM from two patients by standardized histopathological, molecular, and proteomic subtyping. Suitable fresh-frozen tissue samples were profiled by transcriptome sequencing (RNA-Seq) and proteomic profiling with reverse phase protein arrays (RPPA) combined with bioinformatic analyses to assess tumor heterogeneity and identify WNT- and EGFR-related master regulators and metastatic effectors. A standardized data analysis pipeline for integrating RNA-Seq with clinical, proteomic, and genetic data was established. Dimensionality reduction of the transcriptome data revealed a distinct signature for CRLM differing from normal liver tissue and indicated a high degree of tumor heterogeneity. WNT and EGFR signaling were highly active in CRLM and the genes of both pathways were heterogeneously expressed between the two patients as well as between the synchronous metastases of a single patient. An analysis of the master regulators and metastatic effectors implicated in the regulation of these genes revealed a set of four genes (SFN, IGF2BP1, STAT1, PIK3CG) that were differentially expressed in CRLM and were associated with clinical outcome in a large cohort of colorectal cancer patients as well as CRLM samples. In conclusion, high-throughput profiling enabled us to define a CRLM-specific signature and revealed the genes of the WNT and EGFR pathways associated with inter- and intra-patient heterogeneity, which were validated as prognostic biomarkers in CRC primary tumors as well as liver metastases.

8.
Hum Mol Genet ; 31(13): 2185-2193, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35099000

RESUMO

Bloom syndrome (BS) is an autosomal recessive disease clinically characterized by primary microcephaly, growth deficiency, immunodeficiency and predisposition to cancer. It is mainly caused by biallelic loss-of-function mutations in the BLM gene, which encodes the BLM helicase, acting in DNA replication and repair processes. Here, we describe the gene expression profiles of three BS fibroblast cell lines harboring causative, biallelic truncating mutations obtained by single-cell (sc) transcriptome analysis. We compared the scRNA transcription profiles from three BS patient cell lines to two age-matched wild-type controls and observed specific deregulation of gene sets related to the molecular processes characteristically affected in BS, such as mitosis, chromosome segregation, cell cycle regulation and genomic instability. We also found specific upregulation of genes of the Fanconi anemia pathway, in particular FANCM, FANCD2 and FANCI, which encode known interaction partners of BLM. The significant deregulation of genes associated with inherited forms of primary microcephaly observed in our study might explain in part the molecular pathogenesis of microcephaly in BS, one of the main clinical characteristics in patients. Finally, our data provide first evidence of a novel link between BLM dysfunction and transcriptional changes in condensin complex I and II genes. Overall, our study provides novel insights into gene expression profiles in BS on an sc level, linking specific genes and pathways to BLM dysfunction.


Assuntos
Síndrome de Bloom , Microcefalia , Adenosina Trifosfatases , Síndrome de Bloom/genética , Síndrome de Bloom/metabolismo , DNA Helicases , Proteínas de Ligação a DNA/genética , Humanos , Complexos Multiproteicos , RecQ Helicases/genética , RecQ Helicases/metabolismo
9.
Food Environ Virol ; 14(2): 138-148, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35084668

RESUMO

The hepatitis E virus (HEV) causes acute and chronic hepatitis in humans. The zoonotic HEV genotype 3 is mainly transmitted by consumption of contaminated food produced from infected animals. However, transmission via contaminated surfaces has also to be considered. Here, the genotype 3c strain 47832c was dried on steel, wood, plastics and ceramics, stored at 23 °C or 3 °C for up to 8 weeks and remaining infectivity was titrated on cell culture. During the drying process, only a mean 0.2 log10 decrease of HEV infectivity was observed. At 23 °C, remaining infectious virus was detected until week 4 on most surfaces, but HEV was completely inactivated (> 4 log10 decrease) after 8 weeks. At 3 °C, HEV was detectable up to 8 weeks on most surfaces, with an average 2.3 log10 decrease. HEV showed the highest stability on plastics, which was lower on ceramics and steel, and lowest on wood. The addition of bovine serum albumin mimicking high protein load had only a slight stabilizing effect. In conclusion, HEV shows a high stability against drying and subsequent storage on different surfaces. Strict application of hygienic measures during food production is therefore crucial in order to prevent HEV persistence on surfaces and subsequent cross-contamination.


Assuntos
Vírus da Hepatite E , Hepatite E , Animais , Genótipo , Vírus da Hepatite E/genética , Plásticos , Aço
10.
Materials (Basel) ; 14(24)2021 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34947227

RESUMO

Numerous studies show that vat photopolymerization enables near-net-shape printing of ceramics and plastics with complex geometries. In this study, vat photopolymerization was investigated for cemented carbide specimens. Custom-developed photosensitive WC-12 Co (wt%) slurries were used for printing green bodies. The samples were examined for defects using quantitative microstructure analysis. A thermogravimetric analysis was performed to develop a debinding program for the green bodies. After sintering, the microstructure and surface roughness were evaluated. As mechanical parameters, Vickers hardness and Palmqvist fracture toughness were considered. A linear shrinkage of 26-27% was determined. The remaining porosity fraction was 9.0%. No free graphite formation, and almost no η-phase formation occurred. WC grain growth was observed. 76% of the WC grains measured were in the suitable size range for metal cutting tool applications. A hardness of 1157 HV10 and a Palmqvist fracture toughness of 12 MPam was achieved. The achieved microstructure exhibits a high porosity fraction and local cracks. As a result, vat photopolymerization can become an alternative forming method for cemented carbide components if the amount of residual porosity and defects can be reduced.

11.
J Endocrinol ; 248(3): 303-316, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33480359

RESUMO

Ubiquitous overactivation of Hedgehog signaling in adult pituitaries results in increased expression of proopiomelanocortin (Pomc), growth hormone (Gh) and prolactin (Prl), elevated adrenocorticotropic hormone (Acth) production and proliferation of Sox2+ cells. Moreover, ACTH, GH and PRL-expressing human pituitary adenomas strongly express the Hedgehog target GLI1. Accordingly, Hedgehog signaling seems to play an important role in pathology and probably also in homeostasis of the adult hypophysis. However, the specific Hedgehog-responsive pituitary cell type has not yet been identified. We here investigated the Hedgehog pathway activation status and the effects of deregulated Hedgehog signaling cell-specifically in endocrine and non-endocrine pituitary cells. We demonstrate that Hedgehog signaling is unimportant for the homeostasis of corticotrophs, whereas it is active in subpopulations of somatotrophs and folliculo-stellate cells in vivo. Reinforcement of Hedgehog signaling activity in folliculo-stellate cells stimulates growth hormone production/release from somatotrophs in a paracrine manner, which most likely is mediated by the neuropeptide vasoactive intestinal peptide. Overall, our data show that Hedgehog signaling affects the homeostasis of pituitary hormone production via folliculo-stellate cell-mediated regulation of growth hormone production/secretion.


Assuntos
Corticotrofos/metabolismo , Proteínas Hedgehog/metabolismo , Somatotrofos/metabolismo , Animais , Linhagem Celular Tumoral , Feminino , Hormônio do Crescimento/metabolismo , Homeostase , Masculino , Camundongos , Pró-Opiomelanocortina/metabolismo , Ratos , Peptídeo Intestinal Vasoativo/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo
12.
Food Environ Virol ; 12(4): 350-354, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32852672

RESUMO

Hepatitis E virus (HEV) infection can cause acute and chronic hepatitis in humans. The zoonotic HEV genotype 3, which is highly prevalent in Europe, is mainly transmitted by consumption of raw meat and raw meat products produced from infected pigs or wild boars. High salt concentrations represent an important measure to preserve meat products and to inactivate foodborne pathogens. Here, an HEV preparation in phosphate-buffered saline (PBS) was subjected to different salt concentrations and the remaining infectivity was measured in a cell culture assay. Treatments with up to 20% sodium chloride for 24 h at 23 °C, with and without addition of 0.015% sodium nitrite or 0.03% sodium nitrate, did not lead to virus inactivation as compared to PBS only. Conditions usually applied for short-term and long-term fermented raw sausages were simulated by incubation at 22 °C for up to 6 days and at 16 °C for up to 8 weeks, respectively. Only 2% sodium chloride with 0.015% sodium nitrite showed a weak (< 1 log10), but significant, infectivity reduction after 2 and 4 days as compared to PBS only. Addition of 2% sodium chloride and 0.03% sodium nitrate showed a slight, but not significant, decrease in infectivity after 2 and 8 weeks as compared to PBS only. In conclusion, HEV is highly stable at high salt concentrations and at salt conditions usually applied to preserve raw meat products.


Assuntos
Conservação de Alimentos/métodos , Conservantes de Alimentos/farmacologia , Vírus da Hepatite E/efeitos dos fármacos , Nitratos/farmacologia , Cloreto de Sódio/farmacologia , Nitrito de Sódio/farmacologia , Animais , Conservantes de Alimentos/análise , Hepatite E/transmissão , Hepatite E/virologia , Vírus da Hepatite E/fisiologia , Humanos , Produtos da Carne/virologia , Nitratos/análise , Cloreto de Sódio/análise , Nitrito de Sódio/análise , Suínos , Inativação de Vírus/efeitos dos fármacos
13.
IUCrJ ; 7(Pt 2): 306-323, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-32148858

RESUMO

Innovative new crystallographic methods are facilitating structural studies from ever smaller crystals of biological macromolecules. In particular, serial X-ray crystallography and microcrystal electron diffraction (MicroED) have emerged as useful methods for obtaining structural information from crystals on the nanometre to micrometre scale. Despite the utility of these methods, their implementation can often be difficult, as they present many challenges that are not encountered in traditional macromolecular crystallography experiments. Here, XFEL serial crystallography experiments and MicroED experiments using batch-grown microcrystals of the enzyme cyclophilin A are described. The results provide a roadmap for researchers hoping to design macromolecular microcrystallography experiments, and they highlight the strengths and weaknesses of the two methods. Specifically, we focus on how the different physical conditions imposed by the sample-preparation and delivery methods required for each type of experiment affect the crystal structure of the enzyme.

14.
Clin Cancer Res ; 26(2): 439-449, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31548343

RESUMO

PURPOSE: Although patients with advanced-stage non-small cell lung cancers (NSCLC) harboring MET exon 14 skipping mutations (METex14) often benefit from MET tyrosine kinase inhibitor (TKI) treatment, clinical benefit is limited by primary and acquired drug resistance. The molecular basis for this resistance remains incompletely understood. EXPERIMENTAL DESIGN: Targeted sequencing analysis was performed on cell-free circulating tumor DNA obtained from 289 patients with advanced-stage METex14-mutated NSCLC. RESULTS: Prominent co-occurring RAS-MAPK pathway gene alterations (e.g., in KRAS, NF1) were detected in NSCLCs with METex14 skipping alterations as compared with EGFR-mutated NSCLCs. There was an association between decreased MET TKI treatment response and RAS-MAPK pathway co-occurring alterations. In a preclinical model expressing a canonical METex14 mutation, KRAS overexpression or NF1 downregulation hyperactivated MAPK signaling to promote MET TKI resistance. This resistance was overcome by cotreatment with crizotinib and the MEK inhibitor trametinib. CONCLUSIONS: Our study provides a genomic landscape of co-occurring alterations in advanced-stage METex14-mutated NSCLC and suggests a potential combination therapy strategy targeting MAPK pathway signaling to enhance clinical outcomes.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Crizotinibe/uso terapêutico , Éxons , Sistema de Sinalização das MAP Quinases/genética , Proteína Oncogênica p21(ras)/genética , Proteínas Proto-Oncogênicas c-met/genética , Idoso , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Ácidos Nucleicos Livres/sangue , Ácidos Nucleicos Livres/genética , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Terapia de Alvo Molecular/métodos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento , Células Tumorais Cultivadas
15.
16.
Nat Chem ; 11(11): 1058-1066, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31527847

RESUMO

Correlated motions of proteins are critical to function, but these features are difficult to resolve using traditional structure determination techniques. Time-resolved X-ray methods hold promise for addressing this challenge, but have relied on the exploitation of exotic protein photoactivity, and are therefore not generalizable. Temperature jumps, through thermal excitation of the solvent, have been utilized to study protein dynamics using spectroscopic techniques, but their implementation in X-ray scattering experiments has been limited. Here, we perform temperature-jump small- and wide-angle X-ray scattering measurements on a dynamic enzyme, cyclophilin A, demonstrating that these experiments are able to capture functional intramolecular protein dynamics on the microsecond timescale. We show that cyclophilin A displays rich dynamics following a temperature jump, and use the resulting time-resolved signal to assess the kinetics of conformational changes. Two relaxation processes are resolved: a fast process is related to surface loop motions, and a slower process is related to motions in the core of the protein that are critical for catalytic turnover.


Assuntos
Ciclofilina A/metabolismo , Temperatura , Biocatálise , Ciclofilina A/química , Humanos , Modelos Moleculares , Espalhamento de Radiação , Soluções , Raios X
17.
Glia ; 66(11): 2438-2455, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30357946

RESUMO

Mutations and activation of the PI3K signaling pathway in breast cancer cells have been linked to brain metastases. However, here we describe that in some breast cancer brain metastases samples the protein expression of PI3K signaling components is restricted to the metastatic microenvironment. In contrast to the therapeutic effects of PI3K inhibition on the breast cancer cells, the reaction of the brain microenvironment is less understood. Therefore we aimed to quantify the PI3K pathway activity in breast cancer brain metastasis and investigate the effects of PI3K inhibition on the central nervous system (CNS) microenvironment. First, to systematically quantify the PI3K pathway activity in breast cancer brain metastases, we performed a prospective biomarker study using a reverse phase protein array (RPPA). The majority, namely 30 out of 48 (62.5%) brain metastatic tissues examined, revealed high PI3K signaling activity that was associated with a median overall survival (OS) of 9.41 months, while that of patients, whose brain metastases showed only moderate or low PI3K activity, amounted to only 1.93 and 6.71 months, respectively. Second, we identified PI3K as a master regulator of metastasis-promoting macrophages/microglia during CNS colonization; and treatment with buparlisib (BKM120), a pan-PI3K Class I inhibitor with a good blood-brain-barrier penetrance, reduced their metastasis-promoting features. In conclusion, PI3K signaling is active in the majority of breast cancer brain metastases. Since PI3K inhibition does not only affect the metastatic cells but also re-educates the metastasis-promoting macrophages/microglia, PI3K inhibition may hold considerable promise in the treatment of brain metastasis and the respective microenvironment.


Assuntos
Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/secundário , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Macrófagos/enzimologia , Microglia/enzimologia , Adulto , Idoso , Aminopiridinas/uso terapêutico , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Modelos Animais de Doenças , Inibidores Enzimáticos/farmacologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Macrófagos/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Proteínas dos Microfilamentos/metabolismo , Microglia/efeitos dos fármacos , Pessoa de Meia-Idade , Morfolinas/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
18.
Stud Health Technol Inform ; 253: 217-221, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30147077

RESUMO

Somatic single nucleotide variants (SNVs) are genomic events with increasing implications in cancer treatment. The clinical standard for SNVs detection is whole genome/exome sequencing (WGS/WES) in matched tumor-normal samples. Yet, this is a very costly approach both economically and biologically and very often only tumor samples are sequenced. On the other hand, RNA sequencing (RNA-Seq) is the most popular technology to study gene expression, and has also the potential for a cost-effective identification of SNVs as an alternative to tumor-only WES. Here we present a method for the identification of SNVs in tumor-only RNA-Seq data putting a special focus on a small panel of clinically relevant SNVs. For evaluation purposeswe analyzed matched tumor-normal WEStumor-only RNA-Seq data from 14 cancer patients. We compared SNVs detected in i) RNA-Seq by our method, ii) WES tumor-only by Mutect2 and iii) WES matched tumor-normal by Mutect2. We did a detailed evaluation for a reduced panel of clinically relevant SNVs and reliably identified in RNA-Seq data a subset of mutations for which we had pathological annotation. Hence, RNA-Seq rises as a cost-effective option to detect in parallel gene expression as well as a small panel of clinically relevant SNVs in research.


Assuntos
Exoma , Polimorfismo de Nucleotídeo Único , RNA/genética , Sequência de Bases , Humanos , Mutação , Neoplasias/genética
19.
Chemistry ; 24(61): 16323-16331, 2018 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-30157298

RESUMO

PX3 compounds (X=Cl, Br, I) in imidazolium halide ionic liquids combine with the anion Z (Z=Cl, Br, I) of the solvent to form [PX3 Z]- complex anions. These anions have a sawhorse shape in which the lone pair of the phosphorus atom fills the third equatorial position of the pseudotrigonal bipyramid. Theoretical results show that this association remains incomplete due to strong hydrogen bonding with the cations of the ionic liquid, which competes with the phosphorus trihalide for interaction with the Z- anion. Temperature-dependent 31 P NMR experiments indicated that the P-Z binding is weaker at higher temperature. Both theory and experiment evidence dynamic exchange of the halide anions at the phosphorus atom, together with continuous switching of the ligands at the phosphorus atom between equatorial and axial positions. Detailed knowledge of the mechanism of the spontaneous exchange of halogen atoms at phosphorus trihalides suggests a way to design novel, highly conducting ionic-liquid mixtures.

20.
Chemistry ; 24(46): 11899-11903, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-29806888

RESUMO

In order to explore if and how salts comprising polycations and salts comprising polyanions might interact, the [AlBr4 ]- salt of the [Pt@Bi10 ]4+ cluster cation was added to the reaction mixture for the synthesis of the supersphere cluster anion [Ge24 Sn36 Se132 ]24- from Cs4 [Ge4 Se10 ]⋅H2 O and SnCl4 ⋅5 H2 O under ionothermal conditions at 120 °C. Indeed, the reaction yields two new compounds, depending on the cation of the used ionic liquid. Apparently, the polycation is not retained under the given conditions, but it acts as a reductant affording SnII . In a (C4 C1 C1 im)+ -based ionic liquid mixture, a unique supertetrahedral anion is obtained that embeds a Cs+ cation, 0D-{[Cs@SnII4 (GeIV4 Se10 )4 ]7- }, while (C4 C1 im)+ cations stabilize an unprecedented ternary layered anion, 2D-{[SnII (GeIV4 Se10 )]2- }. Test reactions with common sources of SnII did not afford the new compounds, indicating the necessity of an in situ reduction, for which the polycation seems appropriate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA