Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262162, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34982806

RESUMO

Analysis of convalescent plasma derived from individuals has shown that IgG3 has the most important role in binding to SARS-CoV-2 antigens; however, this has not yet been confirmed in large studies, and the link between binding and neutralization has not been confirmed. By analyzing plasma pools consisting of 247-567 individual convalescent donors, we demonstrated the binding of IgG3 and IgM to Spike-1 protein and the receptor-binding domain correlates strongly with viral neutralization in vitro. Furthermore, despite accounting for only approximately 12% of total immunoglobulin mass, collectively IgG3 and IgM account for approximately 80% of the total neutralization. This may have important implications for the development of potent therapies for COVID-19, as it indicates that hyperimmune globulins or convalescent plasma donations with high IgG3 concentrations may be a highly efficacious therapy.


Assuntos
Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/sangue , COVID-19/imunologia , Convalescença , Imunoglobulina G/imunologia , Animais , Anticorpos Neutralizantes/sangue , Anticorpos Antivirais/sangue , Chlorocebus aethiops , Ensaio de Imunoadsorção Enzimática , Humanos , Imunoglobulina G/sangue , Imunoglobulina M/sangue , Imunoglobulina M/imunologia , SARS-CoV-2/fisiologia , Células Vero
3.
J Virol ; 91(22)2017 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28878077

RESUMO

Effective CD8+ T cell responses play an important role in determining the course of a viral infection. Overwhelming antigen exposure can result in suboptimal CD8+ T cell responses, leading to chronic infection. This altered CD8+ T cell differentiation state, termed exhaustion, is characterized by reduced effector function, upregulation of inhibitory receptors, and altered expression of transcription factors. Prevention of overwhelming antigen exposure to limit CD8+ T cell exhaustion is of significant interest for the control of chronic infection. The transcription factor interferon regulatory factor 9 (IRF9) is a component of type I interferon (IFN-I) signaling downstream of the IFN-I receptor (IFNAR). Using acute infection of mice with lymphocytic choriomeningitis virus (LCMV) strain Armstrong, we show here that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and IFN-I and by controlling levels of IRF7, a transcription factor essential for IFN-I production. Infection of IRF9- or IFNAR-deficient mice led to a loss of early restriction of viral replication and impaired antiviral responses in dendritic cells, resulting in CD8+ T cell exhaustion and chronic infection. Differences in the antiviral activities of IRF9- and IFNAR-deficient mice and dendritic cells provided further evidence of IRF9-independent IFN-I signaling. Thus, our findings illustrate a CD8+ T cell-extrinsic function for IRF9, as a signaling factor downstream of IFNAR, in preventing overwhelming antigen exposure resulting in CD8+ T cell exhaustion and, ultimately, chronic infection.IMPORTANCE During early viral infection, overwhelming antigen exposure can cause functional exhaustion of CD8+ T cells and lead to chronic infection. Here we show that the transcription factor interferon regulatory factor 9 (IRF9) plays a decisive role in preventing CD8+ T cell exhaustion. Using acute infection of mice with LCMV strain Armstrong, we found that IRF9 limited early LCMV replication by regulating expression of interferon-stimulated genes and Irf7, encoding a transcription factor crucial for type I interferon (IFN-I) production, as well as by controlling the levels of IFN-I. Infection of IRF9-deficient mice led to a chronic infection that was accompanied by CD8+ T cell exhaustion due to defects extrinsic to T cells. Our findings illustrate an essential role for IRF9, as a mediator downstream of IFNAR, in preventing overwhelming antigen exposure causing CD8+ T cell exhaustion and leading to chronic viral infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Transdução de Sinais/imunologia , Doença Aguda , Animais , Linfócitos T CD8-Positivos/patologia , Doença Crônica , Fator Regulador 7 de Interferon , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Fator Gênico 3 Estimulado por Interferon, Subunidade gama/genética , Coriomeningite Linfocítica/genética , Coriomeningite Linfocítica/patologia , Vírus da Coriomeningite Linfocítica/genética , Camundongos , Camundongos Knockout , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais/genética
4.
Front Immunol ; 8: 1036, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28894447

RESUMO

Short-chain fatty acids (SCFAs), which are generated by the bacterial fermentation of dietary fibers, promote expansion of regulatory T cells (Tregs). Potential therapeutic value of SCFAs has been recently highlighted in the experimental models of T cell-mediated autoimmunity and allergic inflammation. These studies suggest that physiological intestinal concentrations of SCFAs within the millimolar range are crucial for dampening inflammation-mediated processes. Here, we describe opposing effects of SCFAs on T cell-mediated immune responses. In accordance with published data, lower butyrate concentrations facilitated differentiation of Tregs in vitro and in vivo under steady-state conditions. In contrast, higher concentrations of butyrate induced expression of the transcription factor T-bet in all investigated T cell subsets resulting in IFN-γ-producing Tregs or conventional T cells. This effect was mediated by the inhibition of histone deacetylase activity and was independent of SCFA-receptors FFA2 and FFA3 as well as of Na+-coupled SCFA transporter Slc5a8. Importantly, while butyrate was not able to induce the generation of Tregs in the absence of TGF-ß1, the expression of T-bet and IFN-γ was triggered upon stimulation of CD4+ T cells with this SCFA alone. Moreover, the treatment of germ-free mice with butyrate enhanced the expression of T-bet and IFN-γ during acute colitis. Our data reveal that, depending on its concentration and immunological milieu, butyrate may exert either beneficial or detrimental effects on the mucosal immune system.

5.
Genome Announc ; 4(5)2016 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-27660771

RESUMO

Lassa virus (LASV) is a zoonotic, hemorrhagic fever-causing virus endemic in West Africa, for which no approved vaccines or specific treatment options exist. Here, we report the genome sequence of LASV isolated from the first case of acquired Lassa fever disease outside of Africa.

6.
J Infect Dis ; 214(suppl 3): S250-S257, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27638946

RESUMO

BACKGROUND: A unit of the European Mobile Laboratory (EMLab) consortium was deployed to the Ebola virus disease (EVD) treatment unit in Guéckédou, Guinea, from March 2014 through March 2015. METHODS: The unit diagnosed EVD and malaria, using the RealStar Filovirus Screen reverse transcription-polymerase chain reaction (RT-PCR) kit and a malaria rapid diagnostic test, respectively. RESULTS: The cleaned EMLab database comprised 4719 samples from 2741 cases of suspected EVD from Guinea. EVD was diagnosed in 1231 of 2178 hospitalized patients (57%) and in 281 of 563 who died in the community (50%). Children aged <15 years had the highest proportion of Ebola virus-malaria parasite coinfections. The case-fatality ratio was high in patients aged <5 years (80%) and those aged >74 years (90%) and low in patients aged 10-19 years (40%). On admission, RT-PCR analysis of blood specimens from patients who died in the hospital yielded a lower median cycle threshold (Ct) than analysis of blood specimens from survivors (18.1 vs 23.2). Individuals who died in the community had a median Ct of 21.5 for throat swabs. Multivariate logistic regression on 1047 data sets revealed that low Ct values, ages of <5 and ≥45 years, and, among children aged 5-14 years, malaria parasite coinfection were independent determinants of a poor EVD outcome. CONCLUSIONS: Virus load, age, and malaria parasite coinfection play a role in the outcome of EVD.


Assuntos
Ebolavirus/isolamento & purificação , Epidemias , Infecções por Filoviridae/diagnóstico , Doença pelo Vírus Ebola/diagnóstico , Malária/complicações , Unidades Móveis de Saúde , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Serviços de Laboratório Clínico , Ebolavirus/genética , Feminino , Filoviridae , Infecções por Filoviridae/complicações , Infecções por Filoviridae/virologia , Guiné , Doença pelo Vírus Ebola/complicações , Doença pelo Vírus Ebola/virologia , Humanos , Lactente , Malária/parasitologia , Masculino , Pessoa de Meia-Idade , RNA Viral/sangue , Carga Viral , Adulto Jovem
7.
J Gen Virol ; 97(4): 855-866, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26769540

RESUMO

The Arenaviridae is a diverse and growing family of viruses that already includes more than 25 distinct species. While some of these viruses have a significant impact on public health, others appear to be non-pathogenic. At present little is known about the host cell responses to infection with different arenaviruses, particularly those found in the New World; however, apoptosis is known to play an important role in controlling infection of many viruses. Here we show that infection with Tacaribe virus (TCRV), which is widely considered the prototype for non-pathogenic arenaviruses, leads to stronger induction of apoptosis than does infection with its human-pathogenic relative Junín virus. TCRV-induced apoptosis occurred in several cell types during late stages of infection and was shown to be caspase-dependent, involving the activation of caspases 3, 7, 8 and 9. Further, UV-inactivated TCRV did not induce apoptosis, indicating that the activation of this process is dependent on active viral replication/transcription. Interestingly, when apoptosis was inhibited, growth of TCRV was not enhanced, indicating that apoptosis does not have a direct negative effect on TCRV infection in vitro. Taken together, our data identify and characterize an important virus-host cell interaction of the prototypic, non-pathogenic arenavirus TCRV, which provides important insight into the growing field of arenavirus research aimed at better understanding the diversity in responses to different arenavirus infections and their functional consequences.


Assuntos
Arenavirus do Novo Mundo/genética , Caspases/genética , Interações Hospedeiro-Patógeno , Macrófagos/virologia , Replicação Viral/genética , Clorometilcetonas de Aminoácidos/farmacologia , Animais , Apoptose/genética , Apoptose/imunologia , Arenavirus do Novo Mundo/efeitos dos fármacos , Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/efeitos da radiação , Camptotecina/farmacologia , Caspases/imunologia , Linhagem Celular Tumoral , Chlorocebus aethiops , Regulação da Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Hepatócitos/virologia , Humanos , Vírus Junin/genética , Vírus Junin/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Poli(ADP-Ribose) Polimerases/genética , Poli(ADP-Ribose) Polimerases/imunologia , Cultura Primária de Células , Transdução de Sinais , Tubulina (Proteína)/genética , Tubulina (Proteína)/imunologia , Raios Ultravioleta , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/efeitos da radiação
8.
Eur J Immunol ; 46(1): 114-21, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26449668

RESUMO

The genus leishmania comprises different protozoan parasites which are causative agents of muco-cutaneous and systemic, potentially lethal diseases. After infection with the species Leishmania major, resistant mice expand Th1 cells which stimulate macrophages for Leishmania destruction. In contrast, susceptible mice generate Th2 cells which deactivate macrophages, leading to systemic spread of the pathogens. Th-cell differentiation is determined within the first days, and Th2 cell differentiation requires IL-4, whereby the initial IL-4 source is often unknown. Mast cells are potential sources of IL-4, and hence their role in murine leishmaniasis has previously been studied in mast cell-deficient Kit mutant mice, although these mice display immunological phenotypes beyond mast cell deficiency. We therefore readdressed this question by infecting Kit-independent mast cell-deficient mice that are Th1 (C57BL/6 Cpa(Cre) ) or Th2 (BALB/c Cpa(Cre) ) prone with L. major. Using different parasite doses and intra- or subcutaneous infection routes, the results demonstrate no role of mast cells on lesion size development, parasite load, immune cell phenotypes expanding in draining lymph nodes, and cytokine production during murine cutaneous leishmaniasis. Thus, other cell types such as ILCs or T cells have to be considered as primary source of Th2-driving IL-4.


Assuntos
Leishmaniose Cutânea/imunologia , Mastócitos/imunologia , Células Th2/imunologia , Animais , Diferenciação Celular/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Leishmania major , Leishmaniose Cutânea/parasitologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Carga Parasitária
9.
Viruses ; 5(2): 528-49, 2013 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-23435234

RESUMO

The Arenaviridae is a diverse and growing family of viruses that includes several agents responsible for important human diseases. Despite the importance of this family for public health, particularly in Africa and South America, much of its biology remains poorly understood. However, in recent years significant progress has been made in this regard, particularly relating to the formation and release of new enveloped virions, which is an essential step in the viral lifecycle. While this process is mediated chiefly by the viral matrix protein Z, recent evidence suggests that for some viruses the nucleoprotein (NP) is also required to enhance the budding process. Here we highlight and compare the distinct budding mechanisms of different arenaviruses, concentrating on the role of the matrix protein Z, its known late domain sequences, and the involvement of cellular endosomal sorting complex required for transport (ESCRT) pathway components. Finally we address the recently described roles for the nucleoprotein NP in budding and ribonucleoprotein complex (RNP) incorporation, as well as discussing possible mechanisms related to its involvement.


Assuntos
Arenavirus/fisiologia , Liberação de Vírus/fisiologia , Antivirais/farmacologia , Antivirais/uso terapêutico , Infecções por Arenaviridae/tratamento farmacológico , Infecções por Arenaviridae/metabolismo , Complexos Endossomais de Distribuição Requeridos para Transporte , Interações Hospedeiro-Patógeno , Humanos , Nucleoproteínas/metabolismo , Ligação Proteica , Ribonucleoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Virais/química , Proteínas Virais/metabolismo , Liberação de Vírus/efeitos dos fármacos
10.
J Virol ; 87(1): 224-33, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23077297

RESUMO

The regulation of apoptosis during infection is an important factor for host survival and, in some cases, also for the virus life cycle. At the same time, mechanisms to prevent the induction of apoptosis have been observed in numerous viral pathogens, but until now the role of apoptosis during arenavirus infection has not been investigated. Junin virus (JUNV) belongs to the New World arenavirus serogroup of the Arenaviridae and is the causative agent of Argentine hemorrhagic fever. We have demonstrated that infection with JUNV in cell culture does not induce apoptosis but leads to cleavage of the nucleoprotein (NP) into discrete products resembling caspase cleavage events. Similar specific NP degradation patterns were also observed in NP-transfected cell lines, and a closer examination of the sequence of NP showed several putative caspase cleavage motifs. Point mutations that abolished these cleavage motifs were consistent with the loss of certain cleavage products. Consistent with these data, further studies showed that treatment with a caspase inhibitor also reduced NP cleavage, indicating that the observed cleavage events were occurring as a result of caspase activity with NP as a substrate. Finally, we showed that expression of NP suppresses the cleavage of caspase 3 in cells treated with an apoptosis activator. Based on these findings, we propose that NP functions as a decoy substrate for caspase cleavage in order to inhibit the induction of apoptosis in JUNV-infected cells.


Assuntos
Apoptose , Caspases/metabolismo , Evasão da Resposta Imune , Vírus Junin/patogenicidade , Nucleoproteínas/metabolismo , Animais , Chlorocebus aethiops , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Nucleoproteínas/genética , Mutação Puntual , Células Vero
11.
PLoS Negl Trop Dis ; 5(5): e1137, 2011 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-21572983

RESUMO

The mechanisms underlying the development of disease during arenavirus infection are poorly understood. However, common to all hemorrhagic fever diseases is the involvement of macrophages as primary target cells, suggesting that the immune response in these cells may be of paramount importance during infection. Thus, in order to identify features of the immune response that contribute to arenavirus pathogenesis, we have examined the growth kinetics and cytokine profiles of two closely related New World arenaviruses, the apathogenic Tacaribe virus (TCRV) and the hemorrhagic fever-causing Junin virus (JUNV), in primary human monocytes and macrophages. Both viruses grew robustly in VeroE6 cells; however, TCRV titres were decreased by approximately 10 fold compared to JUNV in both monocytes and macrophages. Infection of both monocytes and macrophages with TCRV also resulted in the release of high levels of IL-6, IL-10 and TNF-α, while levels of IFN-α, IFN-ß and IL-12 were not affected. However, we could show that the presence of these cytokines had no direct effect on growth of either TCRV of JUNV in macrophages. Further analysis also showed that while the production of IL-6 and IL-10 are dependent on viral replication, production of TNF-α also occurs after exposure to UV-inactivated TCRV particles and is thus independent of productive virus infection. Surprisingly, JUNV infection did not have an effect on any of the cytokines examined indicating that, in contrast to other viral hemorrhagic fever viruses, macrophage-derived cytokine production is unlikely to play an active role in contributing to the cytokine dysregulation observed in JUNV infected patients. Rather, these results suggest that an early, controlled immune response by infected macrophages may be critical for the successful control of infection of apathogenic viruses and prevention of subsequent disease, including systemic cytokine dysregulation.


Assuntos
Arenavirus do Novo Mundo/imunologia , Arenavirus do Novo Mundo/patogenicidade , Citocinas/metabolismo , Macrófagos/imunologia , Monócitos/imunologia , Animais , Infecções por Arenaviridae , Células Cultivadas , Chlorocebus aethiops , Humanos , Macrófagos/virologia , Monócitos/virologia
12.
J Virol ; 84(7): 3603-11, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20106925

RESUMO

The Z protein has been shown for several arenaviruses to serve as the viral matrix protein. As such, Z provides the principal force for the budding of virus particles and is capable of forming virus-like particles (VLPs) when expressed alone. For most arenaviruses, this activity has been shown to be linked to the presence of proline-rich late-domain motifs in the C terminus; however, for the New World arenavirus Tacaribe virus (TCRV), no such motif exists within Z. It was recently demonstrated that while TCRV Z is still capable of functioning as a matrix protein to induce the formation of VLPs, neither its ASAP motif, which replaces a canonical PT/SAP motif in related viruses, nor its YxxL motif is involved in budding, leading to the suggestion that TCRV uses a novel budding mechanism. Here we show that in comparison to its closest relative, Junin virus (JUNV), TCRV Z buds only weakly when expressed in isolation. While this budding activity is independent of the ASAP or YxxL motif, it is significantly enhanced by coexpression with the nucleoprotein (NP), an effect not seen with JUNV Z. Interestingly, both the ASAP and YxxL motifs of Z appear to be critical for the recruitment of NP into VLPs, as well as for the enhancement of TCRV Z-mediated budding. While it is known that TCRV budding remains dependent on the endosomal sorting complex required for transport, our findings provide further evidence that TCRV uses a budding mechanism distinct from that of other known arenaviruses and suggest an essential role for NP in this process.


Assuntos
Arenavirus do Novo Mundo/fisiologia , Proteínas de Ligação a DNA/fisiologia , Nucleoproteínas/fisiologia , Proteínas Virais/fisiologia , Liberação de Vírus , Motivos de Aminoácidos , Proteínas de Ligação a DNA/química , Glicoproteínas/fisiologia , Proteínas Virais/química , Vírion/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...