Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Cardiol ; 7(10): 671-84, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26516422

RESUMO

AIM: To study the genesis of neointima formation in pulmonary hypertension (PH), we investigated the role of caveolin-1 and related proteins. METHODS: Male Sprague Dawley rats were given monocrotaline (M, 40 mg/kg) or subjected to hypobaric hypoxia (H) to induce PH. Another group was given M and subjected to H to accelerate the disease process (M + H). Right ventricular systolic pressure, right ventricular hypertrophy, lung histology for medial hypertrophy and the presence of neointimal lesions were examined at 2 and 4 wk. The expression of caveolin-1 and its regulatory protein peroxisome proliferator-activated receptor (PPAR) γ, caveolin-2, proliferative and anti-apoptotic factors (PY-STAT3, p-Erk, Bcl-xL), endothelial nitric oxide synthase (eNOS) and heat shock protein (HSP) 90 in the lungs were analyzed, and the results from M + H group were compared with the controls, M and H groups. Double immunofluorescence technique was used to identify the localization of caveolin-1 in pulmonary arteries in rat lungs and in human PH lung tissue. RESULTS: In the M + H group, PH was more severe compared with M or H group. In the 4 wk M+H group, several arteries with reduced caveolin-1 expression in endothelial layer coupled with an increased expression in smooth muscle cells (SMC), exhibited neointimal lesions. Neointima was present only in the arteries exhibiting enhanced caveolin-1 expression in SMC. Lung tissue obtained from patients with PH also revealed neointimal lesions only in the arteries exhibiting endothelial caveolin-1 loss accompanied by an increased caveolin-1 expression in SMC. Reduction in eNOS and HSP90 expression was present in the M groups (2 and 4 wk), but not in the M + H groups. In both M groups and in the M + H group at 2 wk, endothelial caveolin-1 loss was accompanied by an increase in PPARγ expression. In the M + H group at 4 wk, increase in caveolin-1 expression was accompanied by a reduction in the PPARγ expression. In the H group, there was neither a loss of endothelial caveolin-1, eNOS or HSP90, nor an increase in SMC caveolin-1 expression; or any alteration in PPARγ expression. Proliferative pathways were activated in all experimental groups. CONCLUSION: Enhanced caveolin-1 expression in SMC follows extensive endothelial caveolin-1 loss with subsequent neointima formation. Increased caveolin-1 expression in SMC, thus, may be a prelude to neointima formation.

2.
Exp Biol Med (Maywood) ; 237(8): 956-65, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22890027

RESUMO

Caveolin-1 plays a pivotal role in maintaining vascular health. Progressive loss of endothelial caveolin-1 and activation of proliferative and anti-apoptotic pathways occur before the onset of monocrotaline (MCT)-induced pulmonary hypertension (PH), and the rescue of endothelial caveolin-1 attenuates PH. Recently, we reported endothelial caveolin-1 loss associated with enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation in human PH. To examine whether the loss of endothelial caveolin-1 followed by an enhanced expression in SMC is a sequential event in the progression of PH, we studied rats at two and four weeks post-MCT. Right ventricular (RV) systolic pressure, RV hypertrophy, pulmonary vascular histology, and the expression of caveolin-1 and endothelial membrane proteins (platelet/endothelial cell adhesion molecule-1 [PECAM-1], both α and ß subunits of soluble guanylate cyclase [sGC]), von Willebrand factor (vWF), smooth muscle α-actin, proliferative and anti-apoptotic factors (PY-STAT3 and Bcl-xL) and matrix metalloproteinase (MMP) 2 in the lungs were examined. PH was accompanied by a progressive loss of endothelial caveolin-1, activation of PY-STAT3, increased Bcl-xL expression and vascular remodeling at two and four weeks post-MCT. Loss of PECAM-1 and sGC (both subunits) paralleled that of caveolin-1, whereas vWF was well preserved at two weeks post-MCT. At four weeks post-MCT, 29% of the arteries showed a loss of vWF in addition to endothelial caveolin-1, and 70% of these arteries exhibited enhanced expression of caveolin-1 in SMC; and there was increased expression and activity of MMP2. In conclusion, MCT-induced endothelial injury disrupts endothelial cell membrane with a progressive loss of endothelial caveolin-1, and the activation of proliferative and antiapoptotic pathways leading to PH. Subsequent extensive endothelial cell damage results in enhanced expression of caveolin-1 in SMC. In addition, there is a progressive increase in MMP2 expression and activity. These alterations may further facilitate cell proliferation, matrix degradation and cell migration, thus contributing to the progression of the disease.


Assuntos
Caveolina 1/biossíntese , Perfilação da Expressão Gênica , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Animais , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Hipertensão Pulmonar/induzido quimicamente , Pulmão/patologia , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Monocrotalina/administração & dosagem , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
3.
Pulm Circ ; 2(4): 492-500, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23372934

RESUMO

Endothelial caveolin-1 loss is an important feature of pulmonary hypertension (PH); the rescue of caveolin-1 abrogates experimental PH. Recent studies in human PH suggest that the endothelial caveolin-1 loss is followed by an enhanced expression of caveolin-1 in smooth muscle cells (SMC) with subsequent neointima formation. In order to evaluate caveolin-1 expression in infants with PH, we examined the available clinical histories, hemodynamic data, and the expression of caveolin-1, PECAM-1, vWF, and smooth muscle α-actin in the lung biopsy/autopsy specimens obtained from infants with congenital heart disease (CHD, n = 8) and lung disease (n = 9). In CHD group, PH associated with increased pulmonary blood flow exhibited loss of endothelial caveolin-1 and PECAM-1 in pulmonary arteries; additional vWF loss was associated with enhanced expression of caveolin-1 in SMC. In the absence of PH, increased or decreased pulmonary blood flow did not disrupt endothelial caveolin-1, PECAM-1, or vWF; nor was there any enhanced expression of caveolin-1 in SMC. In Lung Disease + PH group, caveolin-1, PECAM-1, and vWF were well preserved in seven infants, and importantly, SMC in these arteries did not exhibit enhanced caveolin-1 expression. Two infants with associated inflammatory disease exhibited loss of endothelial caveolin-1 and PECAM-1; additional loss of vWF was accompanied by enhanced expression of caveolin-1 in SMC. Thus, associated flow-induced shear stress or inflammation, but not elevated pulmonary artery pressure alone, disrupts endothelial caveolin-1. Subsequent vWF loss, indicative of extensive endothelial damage is associated with enhanced expression of caveolin-1 in SMC, which may worsen the disease.

4.
Exp Lung Res ; 36(1): 57-66, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20128682

RESUMO

Monocrotaline (MCT)-induces progressive disruption of endothelial cell membrane and caveolin-1 leading to pulmonary arterial hypertension (PAH). Treatment instituted early rescues caveolin-1 and attenuates PAH. To test the hypothesis that the poor response to therapy in established PAH is due to progressive deregulation of multiple signaling pathways, the authors investigated time-dependent changes in the expression of caveolin-1, gp130, PY-STAT3, Bcl-xL, and the molecules involved in NO signaling pathway (endothelial nitric oxide synthase [eNOS], heat sock protein 90 [HSP90], Akt, soluble guanylate cyclase [sGC] alpha1 and beta1 subunits). PAH and right ventricular hypertrophy (RVH) were observed at 2 and 3 weeks. Progressive loss of endothelial caveolin-1 and sGC (alpha1, beta1), PY-STAT3 activation, and Bcl-xL expression were observed at 1 to 3 weeks post-MCT. The expression of gp130 increased at 48 hours and 1 week, with a subsequent loss at 2 and 3 weeks. The expression of eNOS increased at 48 hours and 1 week post-MCT, with a significant loss at 3 weeks. The expression of HSP90 and Akt decreased at 2 and 3 weeks post-MCT concomitant with PAH. Thus, MCT induces progressive loss of membrane and cytosolic proteins, resulting in the activation of proliferative and antiapoptotic factors, and deregulation of NO signaling leading to PAH. An attractive therapeutic approach to treat PAH may be an attempt to rescue endothelial cell membrane integrity.


Assuntos
Células Endoteliais/patologia , Hipertensão Pulmonar/patologia , Inflamação/patologia , Animais , Citosol/química , Progressão da Doença , Expressão Gênica , Masculino , Proteínas de Membrana/análise , Monocrotalina/toxicidade , Óxido Nítrico/metabolismo , Proteínas/análise , Ratos , Ratos Sprague-Dawley , Transdução de Sinais , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA