Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Dev ; 19(1): 5, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38720353

RESUMO

BACKGROUND: Chaetognaths are a clade of marine worm-like invertebrates with a heavily debated phylogenetic position. Their nervous system superficially resembles the protostome type, however, knowledge regarding the molecular processes involved in neurogenesis is lacking. To better understand these processes, we examined the expression profiles of marker genes involved in bilaterian neurogenesis during post-embryonic stages of Spadella cephaloptera. We also investigated whether the transcription factor encoding genes involved in neural patterning are regionally expressed in a staggered fashion along the mediolateral axis of the nerve cord as it has been previously demonstrated in selected vertebrate, insect, and annelid models. METHODS: The expression patterns of genes involved in neural differentiation (elav), neural patterning (foxA, nkx2.2, pax6, pax3/7, and msx), and neuronal function (ChAT and VAChT) were examined in S. cephaloptera hatchlings and early juveniles using whole-mount fluorescent in situ hybridization and confocal microscopy. RESULTS: The Sce-elav + profile of S. cephaloptera hatchlings reveals that, within 24 h of post-embryonic development, the developing neural territories are not limited to the regions previously ascribed to the cerebral ganglion, the ventral nerve center (VNC), and the sensory organs, but also extend to previously unreported CNS domains that likely contribute to the ventral cephalic ganglia. In general, the neural patterning genes are expressed in distinct neural subpopulations of the cerebral ganglion and the VNC in hatchlings, eventually becoming broadly expressed with reduced intensity throughout the CNS in early juveniles. Neural patterning gene expression domains are also present outside the CNS, including the digestive tract and sensory organs. ChAT and VAChT domains within the CNS are predominantly observed in specific subpopulations of the VNC territory adjacent to the ventral longitudinal muscles in hatchlings. CONCLUSIONS: The observed spatial expression domains of bilaterian neural marker gene homologs in S. cephaloptera suggest evolutionarily conserved roles in neurogenesis for these genes among bilaterians. Patterning genes expressed in distinct regions of the VNC do not show a staggered medial-to-lateral expression profile directly superimposable to other bilaterian models. Only when the VNC is conceptually laterally unfolded from the longitudinal muscle into a flat structure, an expression pattern bearing resemblance to the proposed conserved bilaterian mediolateral regionalization becomes noticeable. This finding supports the idea of an ancestral mediolateral patterning of the trunk nervous system in bilaterians.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neurogênese , Animais , Neurogênese/fisiologia , Invertebrados/genética , Padronização Corporal/genética , Padronização Corporal/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
2.
Sci Rep ; 13(1): 15492, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726311

RESUMO

Few other invertebrates captivate our attention as cephalopods do. Octopods, cuttlefish, and squids amaze with their behavior and sophisticated body plans that belong to the most intriguing among mollusks. Little is, however, known about their body plan formation and the role of Hox genes. The latter homeobox genes pattern the anterior-posterior body axis and have only been studied in a single decapod species so far. Here, we study developmental Hox and ParaHox gene expression in Octopus vulgaris. Hox genes are expressed in a near-to-staggered fashion, among others in homologous organs of cephalopods such as the stellate ganglia, the arms, or funnel. As in other mollusks Hox1 is expressed in the nascent octopod shell rudiment. While ParaHox genes are expressed in an evolutionarily conserved fashion, Hox genes are also expressed in some body regions that are considered homologous among mollusks such as the cephalopod arms and funnel with the molluscan foot. We argue that cephalopod Hox genes are recruited to a lesser extent into the formation of non-related organ systems than previously thought and emphasize that despite all morphological innovations molecular data still reveal the ancestral molluscan heritage of cephalopods.


Assuntos
Genes Homeobox , Octopodiformes , Animais , Genes Homeobox/genética , Decapodiformes , Octopodiformes/genética , , Extremidade Inferior
3.
J Exp Zool B Mol Dev Evol ; 340(5): 342-353, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36855226

RESUMO

The phylogenetic position of chaetognaths, or arrow worms, has been debated for decades, however recently they have been grouped into the Gnathifera, a sister clade to all other Spiralia. Chaetognath photoreceptor cells are anatomically unique by exhibiting a highly modified cilium and are arranged differently in the eyes of the various species. Studies investigating eye development and underlying gene regulatory networks are so far missing. To gain insights into the development and the molecular toolkit of chaetognath photoreceptors and eyes a new transcriptome of the epibenthic species Spadella cephaloptera was searched for opsins. Our screen revealed two copies of xenopsin and a single copy of peropsin. Gene expression analyses demonstrated that only xenopsin1 is expressed in photoreceptor cells of the developing lateral eyes. Adults likewise exhibit two xenopsin1 + photoreceptor cells in each of their lateral eyes. Beyond that, a single cryptochrome gene was uncovered and found to be expressed in photoreceptor cells of the lateral developing eye. In addition, cryptochrome is also expressed in the cerebral ganglia in a region in which also peropsin expression was observed. This condition is reminiscent of a nonvisual photoreceptive zone in the apical nervous system of the annelid Platynereis dumerilii that performs circadian entrainment and melatonin release. Cryptochrome is also expressed in cells of the corona ciliata, an organ in the posterior dorsal head region, indicating a role in circadian entrainment. Our study highlights the importance of the Gnathifera for unraveling the evolution of photoreceptors and eyes in Spiralia and Bilateria.


Assuntos
Anelídeos , Opsinas , Animais , Filogenia , Opsinas/genética , Opsinas/metabolismo , Criptocromos/genética , Células Fotorreceptoras/metabolismo
4.
Methods Mol Biol ; 2047: 311-324, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31552662

RESUMO

Representatives of the phylum Mollusca have long been important models in neurobiological research. Recently, the routine application of immunocytochemistry and gene expression analyses in combination with confocal laserscanning microscopy has allowed fast generation of highly detailed reconstructions of neural structures of even the smallest multicellular animals, including early developmental stages. As a consequence, large-scale comparative analyses of neurogenesis-an important prerequisite for inferences concerning the evolution of animal nervous systems-are now possible in a reasonable amount of time. Herein, we describe immunocytochemical staining and in situ hybridization protocols for both, whole-mount preparations of developmental stages-usually 70-300 µm in size-as well as for vibratome and cryostat sections of complex brains. Although our procedures have been optimized for marine molluscs, they may easily be adapted to other (marine) organisms by the creative neurobiologist.


Assuntos
Imuno-Histoquímica/métodos , Hibridização In Situ/métodos , Moluscos/crescimento & desenvolvimento , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Microscopia Confocal , Moluscos/metabolismo
5.
Evodevo ; 10: 25, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31641428

RESUMO

BACKGROUND: Eyes have evolved and been lost multiple times during animal evolution, however, the process of eye loss has only been reconstructed in a few cases. Mollusks exhibit eyes as varied as the octopod camera eye or the gastropod cup eye and are ideal systems for studying the evolution of eyes, photoreceptors, and opsins. RESULTS: Here, we identify genes related to photoreceptor formation and function in an eyeless conchiferan mollusk, the scaphopod Antalis entalis, and investigate their spatial and temporal expression patterns during development. Our study reveals that the scaphopod early mid-stage trochophore larva has putative photoreceptors in a similar location and with a similar gene expression profile as the trochophore of polyplacophoran mollusks. The apical and post-trochal putative photoreceptors appear to co-express go-opsin, six1/2, myoV, and eya, while expression domains in the posterior foot and pavilion (posterior mantle opening) show co-expression of several other candidate genes but not go-opsin. Sequence analysis reveals that the scaphopod Go-opsin amino acid sequence lacks the functionally important lysine (K296; Schiff base) in the retinal-binding domain, but has not accumulated nonsense mutations and still exhibits the canonical G-protein activation domain. CONCLUSIONS: The scaphopod Go-opsin sequence reported here is the only known example of a bilaterian opsin that lacks lysine K296 in the retinal-binding domain. Although this may render the Go-opsin unable to detect light, the protein may still perform sensory functions. The location, innervation, development, and gene expression profiles of the scaphopod and polyplacophoran apical and post-trochal photoreceptors suggest that they are homologous, even though the scaphopod post-trochal photoreceptors have degenerated. This indicates that post-trochal eyes are not a polyplacophoran apomorphy but likely a molluscan synapomorphy lost in other mollusks. Scaphopod eye degeneration is probably a result of the transition to an infaunal life history and is reflected in the likely functional degeneration of Go-opsin, the loss of photoreceptor shielding pigments, and the scarce expression of genes involved in phototransduction and eye development. Our results emphasize the importance of studying a phylogenetically broad range of taxa to infer the mechanisms and direction of body plan evolution.

6.
DNA Res ; 26(5): 411-422, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31504356

RESUMO

Freshwater dreissenid mussels evolved from marine ancestors during the Miocene ∼30 million years ago and today include some of the most successful and destructive invasive species of freshwater environments. Here, we sequenced the genome of the quagga mussel Dreissena rostriformis to identify adaptations involved in embryonic osmoregulation. We provide evidence that a lophotrochozoan-specific aquaporin water channel, a vacuolar ATPase subunit and a sodium/hydrogen exchanger are involved in osmoregulation throughout early cleavage, during which time large intercellular fluid-filled 'cleavage cavities' repeatedly form, coalesce and collapse, expelling excess water to the exterior. Independent expansions of aquaporins coinciding with at least five freshwater colonization events confirm their role in freshwater adaptation. Repeated aquaporin expansions and the evolution of membrane-bound fluid-filled osmoregulatory structures in diverse freshwater taxa point to a fundamental principle guiding the evolution of freshwater tolerance and provide a framework for future species control efforts.


Assuntos
Adaptação Fisiológica , Dreissena/genética , Água Doce , Genoma , Animais , Masculino , Filogenia , Análise de Sequência de DNA
7.
Mitochondrial DNA B Resour ; 4(2): 3161-3162, 2019 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-33365899

RESUMO

Complete mitochondrial genomes were determined for two scaphopod molluscs: the dentaliid Antalis entalis and an unidentified Antarctic gadilid. Both genomes are complete except, in Gadilida sp. indet., a short stretch of nad5 was undetermined and trnR could not be annotated. Organization of the Gadilida sp. genome is nearly identical to that previously reported for the gadilid Siphonodentalium whereas trnK, nad5, trnD, nad4, and nad4l are transposed to the opposite strand in the previously published Graptacme genome relative to that of Antalis. Phylogenetic analysis of the 13 protein-coding and 2 rRNA genes recovered Scaphopoda, Gadilida, and Dentaliida monophyletic with maximal support.

8.
Biol Rev Camb Philos Soc ; 94(1): 102-115, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29931833

RESUMO

Molluscs are extremely diverse invertebrate animals with a rich fossil record, highly divergent life cycles, and considerable economical and ecological importance. Key representatives include worm-like aplacophorans, armoured groups (e.g. polyplacophorans, gastropods, bivalves) and the highly complex cephalopods. Molluscan origins and evolution of their different phenotypes have largely remained unresolved, but significant progress has been made over recent years. Phylogenomic studies revealed a dichotomy of the phylum, resulting in Aculifera (shell-less aplacophorans and multi-shelled polyplacophorans) and Conchifera (all other, primarily uni-shelled groups). This challenged traditional hypotheses that proposed that molluscs gradually evolved complex phenotypes from simple, worm-like animals, a view that is corroborated by developmental studies that showed that aplacophorans are secondarily simplified. Gene expression data indicate that key regulators involved in anterior-posterior patterning (the homeobox-containing Hox genes) lost this function and were co-opted into the evolution of taxon-specific novelties in conchiferans. While the bone morphogenetic protein (BMP)/decapentaplegic (Dpp) signalling pathway, that mediates dorso-ventral axis formation, and molecular components that establish chirality appear to be more conserved between molluscs and other metazoans, variations from the common scheme occur within molluscan sublineages. The deviation of various molluscs from developmental pathways that otherwise appear widely conserved among metazoans provides novel hypotheses on molluscan evolution that can be tested with genome editing tools such as the CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/clustered regularly interspaced short palindromic repeats-associated protein9) system.

9.
Proc Biol Sci ; 285(1888)2018 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-30305436

RESUMO

Hox genes are expressed along the anterior-posterior body axis in a colinear fashion in the majority of bilaterians. Contrary to polyplacophorans, a group of aculiferan molluscs with conserved ancestral molluscan features, gastropods and cephalopods deviate from this pattern by expressing Hox genes in distinct morphological structures and not in a staggered fashion. Among conchiferans, scaphopods exhibit many similarities with gastropods, cephalopods and bivalves, however, the molecular developmental underpinnings of these similar traits remain unknown. We investigated Hox gene expression in developmental stages of the scaphopod Antalis entalis to elucidate whether these genes are involved in patterning morphological traits shared by their kin conchiferans. Scaphopod Hox genes are predominantly expressed in the foot and mantle but also in the central nervous system. Surprisingly, the scaphopod mid-stage trochophore exhibits a near-to staggered expression of all nine Hox genes identified. Temporal colinearity was not found and early-stage and late-stage trochophores, as well as postmetamorphic individuals, do not show any apparent traces of staggered expression. In these stages, Hox genes are expressed in distinct morphological structures such as the cerebral and pedal ganglia and in the shell field of early-stage trochophores. Interestingly, a re-evaluation of previously published data on early-stage cephalopod embryos and of the gastropod pre-torsional veliger shows that these developmental stages exhibit traces of staggered Hox expression. Considering our results and all gene expression and genomic data available for molluscs as well as other bilaterians, we suggest a last common molluscan ancestor with colinear Hox expression in predominantly ectodermal tissues along the anterior-posterior axis. Subsequently, certain Hox genes have been co-opted into the patterning process of distinct structures (apical organ or prototroch) in conchiferans.


Assuntos
Padronização Corporal/genética , Expressão Gênica , Genes Homeobox/genética , Moluscos/genética , Animais , Perfilação da Expressão Gênica , Larva/genética , Larva/crescimento & desenvolvimento , Moluscos/crescimento & desenvolvimento
10.
Evol Dev ; 20(1): 17-28, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29243871

RESUMO

The homeodomain transcription factors six3 and otx are involved in patterning the anterior body and parts of the central nervous system (CNS) in bilaterians. Their similar expression patterns have been used as an argument for homology of heads, brains, segmentation, and ciliated larvae. We investigated the developmental expression of six3 and otx in the aplacophoran mollusk Wirenia argentea. Six3 is expressed in subepithelial cells delimiting the apical organ of the solenogaster pericalymma larva. Otx is expressed in cells of the prototroch and adjacent regions as well as in posterior extensions of the prototrochal expression domain. Advanced larvae also show pretrochal otx expression in the developing CNS. Comparative analysis of six3 and otx expression in bilaterians argues for an ancestral function in anterior-posterior body axis patterning but, due to its presence in animals lacking a head and/or a brain, not necessarily for the presence of these morphological structures in the last common ancestor (LCA) of bilaterians. Likewise, the hypothesis that the posterior border of otx expression corresponds to the border between the unsegmented head and the segmented trunk of the LCA of protostomes is not supported, since otx is extensively expressed in the trunk in W. argentea and numerous other protostomes.


Assuntos
Proteínas do Olho/genética , Proteínas de Homeodomínio/genética , Moluscos/anatomia & histologia , Moluscos/genética , Proteínas do Tecido Nervoso/genética , Fatores de Transcrição Otx/genética , Animais , Evolução Biológica , Padronização Corporal , Encéfalo/anatomia & histologia , Encéfalo/embriologia , Encéfalo/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Cabeça/anatomia & histologia , Cabeça/embriologia , Moluscos/embriologia , Moluscos/fisiologia , Proteína Homeobox SIX3
11.
Sci Rep ; 7(1): 5486, 2017 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-28710480

RESUMO

The 'brain regionalization genes' Six3/6, Otx, Pax2/5/8, Gbx, and Hox1 are expressed in a similar fashion in the deuterostome, ecdysozoan, and the cephalopod brain, questioning whether this holds also true for the remaining Mollusca. We investigated developmental Gbx-expression in representatives of both molluscan sister groups, the Aculifera and Conchifera. Gbx is expressed in the posterior central nervous system of an aculiferan polyplacophoran and solenogaster but not in a conchiferan bivalve suggesting that Gbx, together with Six3/6, Otx, Pax2/5/8, and Hox1, is involved in central nervous system regionalization as reported for other bilaterians. Gbx is, however, also expressed in the anterior central nervous system, i.e. the anlagen of the cerebral ganglia, in the solenogaster, a condition not reported for any other bilaterian so far. Strikingly, all Gbx-orthologs and the other 'posterior brain regionalization genes' such as Pax2/5/8 and Hox1 are expressed in the mantle that secretes shell(s) and spicules of mollusks (except cephalopods). In bivalves, the ancestral condition has even been lost, with Gbx and Pax2/5/8 not being expressed in the developing central nervous system anymore. This suggests an additional role in the formation of the molluscan shell field(s) and spicule-bearing cells, key features of mollusks.


Assuntos
Exoesqueleto/crescimento & desenvolvimento , Exoesqueleto/metabolismo , Padronização Corporal/genética , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Moluscos/crescimento & desenvolvimento , Moluscos/genética , Animais , Regulação da Expressão Gênica no Desenvolvimento , Larva/genética , Filogenia
12.
BMC Evol Biol ; 17(1): 81, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302062

RESUMO

BACKGROUND: Pax genes are transcription factors with significant roles in cell fate specification and tissue differentiation during animal ontogeny. Most information on their tempo-spatial mode of expression is available from well-studied model organisms where the Pax-subfamilies Pax2/5/8, Pax6, and Paxα/ß are mainly involved in the development of the central nervous system (CNS), the eyes, and other sensory organs. In certain taxa, Pax2/5/8 seems to be additionally involved in the development of excretion organs. Data on expression patterns in lophotrochozoans, and in particular in mollusks, are very scarce for all the above-mentioned Pax-subfamilies, which hampers reconstruction of their putative ancestral roles in bilaterian animals. Thus, we studied the developmental expression of Pax2/5/8, Pax6, and the lophotrochozoan-specific Paxß in the worm-shaped mollusk Wirenia argentea, a member of Aplacophora that together with Polyplacophora forms the Aculifera, the proposed sister taxon to all primarily single-shelled mollusks (Conchifera). RESULTS: All investigated Pax genes are expressed in the developing cerebral ganglia and in the ventral nerve cords, but not in the lateral nerve cords of the tetraneural nervous system. Additionally, Pax2/5/8 is expressed in epidermal spicule-secreting or associated cells of the larval trunk and in the region of the developing protonephridia. We found no indication for an involvement of the investigated Pax genes in the development of larval or adult sensory organs of Wirenia argentea. CONCLUSIONS: Pax2/5/8 seems to have a conserved role in the development of the CNS, whereas expression in the spicule-secreting tissues of aplacophorans and polyplacophorans suggests co-option in aculiferan skeletogenesis. The Pax6 expression pattern in Aculifera largely resembles the common bilaterian expression during CNS development. All data available on Paxß expression argue for a common role in lophotrochozoan neurogenesis.


Assuntos
Moluscos/genética , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Sequência de Aminoácidos , Animais , Olho/metabolismo , Larva/crescimento & desenvolvimento , Moluscos/classificação , Moluscos/crescimento & desenvolvimento , Moluscos/metabolismo , Fatores de Transcrição Box Pareados/química , Filogenia , Alinhamento de Sequência
13.
J Exp Zool B Mol Dev Evol ; 326(7): 422-436, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27966274

RESUMO

The study of aplacophoran mollusks (i.e., Solenogastres or Neomeniomorpha and Caudofoveata or Chaetodermomorpha) has traditionally been regarded as crucial for reconstructing the morphology of the last common ancestor of the Mollusca. Since their proposed close relatives, the Polyplacophora, show a distinct seriality in certain organ systems, the aplacophorans are also in the focus of attention with regard to the question of a potential segmented ancestry of mollusks. To contribute to this question, we investigated cell proliferation patterns and the expression of the twist ortholog during larval development in solenogasters. In advanced to late larvae, during the outgrowth of the trunk, a pair of longitudinal bands of proliferating cells is found subepithelially in a lateral to ventrolateral position. These bands elongate during subsequent development as the trunk grows longer. Likewise, expression of twist occurs in two laterally positioned, subepithelial longitudinal stripes in advanced larvae. Both, the pattern of proliferating cells and the expression domain of twist demonstrate the existence of extensive and long-lived mesodermal bands in a worm-shaped aculiferan, a situation which is similar to annelids but in stark contrast to conchiferans, where the mesodermal bands are usually rudimentary and ephemeral. Yet, in contrast to annelids, neither the bands of proliferating cells nor the twist expression domain show a separation into distinct serial subunits, which clearly argues against a segmented ancestry of mollusks. Furthermore, the lack of twist expression during the development of the ventromedian muscle argues against homology of a ventromedian longitudinal muscle in protostomes with the notochord of chordates.


Assuntos
Moluscos/citologia , Moluscos/metabolismo , Proteína 1 Relacionada a Twist/metabolismo , Animais , Evolução Biológica , Proliferação de Células , Larva/citologia , Larva/crescimento & desenvolvimento , Larva/metabolismo , Moluscos/crescimento & desenvolvimento , Desenvolvimento Muscular , Filogenia
14.
J Exp Zool B Mol Dev Evol ; 326(2): 89-104, 2016 03.
Artigo em Inglês | MEDLINE | ID: mdl-27098677

RESUMO

Molecular developmental studies of various bilaterians have shown that the identity of the anteroposterior body axis is controlled by Hox and ParaHox genes. Detailed Hox and ParaHox gene expression data are available for conchiferan mollusks, such as gastropods (snails and slugs) and cephalopods (squids and octopuses), whereas information on the putative conchiferan sister group, Aculifera, is still scarce (but see Fritsch et al., 2015 on Hox gene expression in the polyplacophoran Acanthochitona crinita). In contrast to gastropods and cephalopods, the Hox genes in polyplacophorans are expressed in an anteroposterior sequence similar to the condition in annelids and other bilaterians. Here, we present the expression patterns of the Hox genes Lox5, Lox4, and Lox2, together with the ParaHox gene caudal (Cdx) in the polyplacophoran A. crinita. To localize Hox and ParaHox gene transcription products, we also investigated the expression patterns of the genes FMRF and Elav, and the development of the nervous system. Similar to the other Hox genes, all three Acr-Lox genes are expressed in an anteroposterior sequence. Transcripts of Acr-Cdx are seemingly present in the forming hindgut at the posterior end. The expression patterns of both the central class Acr-Lox genes and the Acr-Cdx gene are strikingly similar to those in annelids and nemerteans. In Polyplacophora, the expression patterns of the Hox and ParaHox genes seem to be evolutionarily highly conserved, while in conchiferan mollusks these genes are co-opted into novel functions that might have led to evolutionary novelties, at least in gastropods and cephalopods.


Assuntos
Proteínas de Homeodomínio/metabolismo , Moluscos/metabolismo , Sequência de Aminoácidos , Animais , Padronização Corporal/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/genética , Larva/crescimento & desenvolvimento , Larva/metabolismo , Moluscos/genética , Moluscos/crescimento & desenvolvimento , Filogenia
15.
Evodevo ; 6: 41, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26715985

RESUMO

BACKGROUND: It has been hypothesized that the ParaHox gene Gsx patterned the foregut of the last common bilaterian ancestor. This notion was corroborated by Gsx expression in three out of four lophotrochozoan species, several ecdysozoans, and some deuterostomes. Remarkably, Gsx is also expressed in the bilaterian anterior-most central nervous system (CNS) and the gastropod and annelid apical organ. To infer whether these findings are consistent with other mollusks or even lophotrochozoans, we investigated Gsx expression in developmental stages of representatives of two other molluscan classes, the scaphopod Antalis entalis and the cephalopod Idiosepius notoides. RESULTS: Gsx is not expressed in the developing digestive tract of Antalis entalis and Idiosepius notoides. Instead, it is expressed in cells of the apical organ in the scaphopod trochophore and in two cells adjacent to this organ. Late-stage trochophores express Aen-Gsx in cells of the developing cerebral and pedal ganglia and in cells close to the pavilion, mantle, and foot. In postmetamorphic specimens, Aen-Gsx is expressed in the cerebral and pedal ganglia, the foot, and the nascent captacula. In early squid embryos, Ino-Gsx is expressed in the cerebral, palliovisceral, and optic ganglia. In late-stage embryos, Ino-Gsx is additionally expressed close to the eyes and in the supraesophageal and posterior subesophageal masses and optic lobes. Developmental stages close to hatching express Ino-Gsx only close to the eyes. CONCLUSIONS: Our results suggest that Gsx expression in the foregut might not be a plesiomorphic trait of the Lophotrochozoa as insinuated previously. Since neither ecdysozoans nor deuterostomes express Gsx in their gut, a role in gut formation in the last common bilaterian ancestor appears unlikely. Gsx is consistently expressed in the bilaterian anterior-most CNS and the apical organ of lophotrochozoan larvae, suggesting a recruitment of Gsx into the formation of this organ in the Lophotrochozoa. The cephalopod posterior subesophageal mass and optic ganglia and the scaphopod pedal ganglia also express Gsx. In summary, Gsx expression only appears to be conserved in the anterior-most brain region during evolution. Accordingly, Gsx appears to have been recruited into the formation of other expression domains, e.g., the apical organ or the foregut, in some lophotrochozoans.

16.
BMC Evol Biol ; 15: 231, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26511716

RESUMO

BACKGROUND: Mollusks represent the largest lophotrochozoan phylum and exhibit highly diverse body plans. Previous studies have demonstrated that transcription factors such as Pax genes play important roles during their development. Accordingly, in ecdysozoan and vertebrate model organisms, orthologs of Pax2/5/8 are among others involved in the formation of the midbrain/hindbrain boundary, the auditory/geosensory organ systems, and the excretory system. METHODS: Pax2/5/8 expression was investigated by in situ hybridization during the development of representatives of the two major molluscan subclades, Aculifera and Conchifera. RESULTS: Compared to the investigated polyplacophoran and bivalve species that lack larval statocysts as geosensory organs and elaborate central nervous systems (CNS), cephalopods possess highly centralized brains and statocysts. Pax2/5/8 is expressed in regions where sensory cells develop subsequently during ontogenesis. Expression domains include esthetes and the ampullary system in polyplacophorans as well as the eyes of cephalopods. No Pax2/5/8 expression was observed in the less centralized CNS of bivalve, polyplacophoran, and gastropod embryos, thus arguing for a loss of Pax2/5/8 involvement in CNS development in these lineages. In contrast, Pax2/5/8 is expressed among others in brain lobes along the trajectory of the esophagus that divides the cephalopod brain. CONCLUSIONS: Our results, along with those on Otx- and Hox-gene expression, demonstrate that the cephalopod condition is similar to that in mouse and fruit fly, with Otx being expressed in the anterior-most brain region (except for the vertical lobe) and a Pax2/5/8 expression domain separating the Otx-domain from a Hox-gene expressing posterior brain region. Thus, Pax2/5/8 appears to have been recruited independently into regionalization of non-homologous complex brains of organisms as different as squid, fruit fly, and mouse. In addition, Pax2/5/8 is expressed in multimodal sensory systems in mollusks such as the esthetes and the ampullary system of polyplacophorans as well as the eyes of cephalopods. Pax2/5/8-expressing cells are present in regions where the future sensory cells such as the polyplacophoran esthetes are situated and hence Pax2/5/8 expression probably predates sensory cell development during ontogeny. In mollusks, Pax2/5/8 is only expressed in derivatives of the ectoderm and hence an ancestral role in molluscan ectoderm differentiation is inferred.


Assuntos
Evolução Molecular , Moluscos/classificação , Moluscos/crescimento & desenvolvimento , Fatores de Transcrição Box Pareados/genética , Sequência de Aminoácidos , Animais , Encéfalo/crescimento & desenvolvimento , Hibridização In Situ , Dados de Sequência Molecular , Moluscos/genética , Moluscos/metabolismo , Fatores de Transcrição Box Pareados/metabolismo , Filogenia , Alinhamento de Sequência
17.
BMC Evol Biol ; 15: 201, 2015 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-26385077

RESUMO

BACKGROUND: Recent studies suggest a bifurcation at the base of Mollusca, resulting in the primarily single-shelled Conchifera (Bivalvia, Gastropoda, Scaphopoda, Monoplacophora, Cephalopoda) and the spicule-bearing Aculifera (Polyplacophora, Neomeniomorpha, Chaetodermomorpha). A recent study revealed a complex larval musculature exclusively shared by Neomeniomorpha and Polyplacophora, supporting a close relationship of both taxa. However, the ontogenetic transition from the complex larval to the simple adult neomeniomorph musculature, which mainly consists of a three-layered body-wall musculature and serially iterated dorsoventral muscles, remains unknown. To close this gap in knowledge, we studied remodeling of the larval musculature during metamorphosis in the neomeniomorph Wirenia argentea. A comparative analysis with a novel data set of a polyplacophoran, Leptochiton asellus, allows us to infer the morphology of the last common ancestor of Aculifera and the evolution of its subclades therefrom. RESULTS: The complex larval musculature of Wirenia argentea persists through metamorphosis and becomes modified to form two of the three muscle layers of the adult body wall. The innermost longitudinal layer of the three-layered body wall musculature is generated by transformation and expansion of distinct larval longitudinal muscle bundles. The larval ventrolateral muscle strands are remodeled and eventually become the most ventral part of the adult longitudinal layer of the body wall musculature. The paired larval enrolling muscle forms the lateral parts and the former rectus muscle is destined to become the most dorsal part of the longitudinal layer of the body wall musculature. The transient ventromedian muscle is lost during postmetamorphic development. CONCLUSIONS: Postmetamorphic remodeling in W. argentea supports the hypothesis of a complex myoanatomy rather than a three-layered body wall musculature at the base of Aculifera, and thus argues against homology of the body wall musculature of adult Neomeniomorpha and other potential molluscan sister groups. Our data show that the neomeniomorph body wall musculature is a derived condition and not an aculiferan or molluscan plesiomorphy.


Assuntos
Moluscos/crescimento & desenvolvimento , Moluscos/genética , Desenvolvimento Muscular , Animais , Evolução Biológica , Larva/crescimento & desenvolvimento , Metamorfose Biológica , Moluscos/classificação , Filogenia
18.
Methods Mol Biol ; 1082: 117-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24048930

RESUMO

Representatives of the phylum Mollusca have long been important models in neurobiological research. Recently, the routine application of immunocytochemistry in combination with confocal laser scanning microscopy has allowed fast generation of highly detailed reconstructions of neural structures of even the smallest multicellular animals, including early developmental stages. As a consequence, large-scale comparative analyses of neurogenesis-an important prerequisite for inferences concerning the evolution of animal nervous systems-are now possible in a reasonable amount of time. Herein, we describe immunocytochemical staining protocols for both whole-mount preparations of developmental stages-usually 70-300 µm in size-as well as for vibratome sections of complex brains. Although our procedures have been optimized for marine molluscs, they may easily be adapted for other (marine) organisms by the creative neurobiologist.


Assuntos
Encéfalo/crescimento & desenvolvimento , Imuno-Histoquímica/métodos , Moluscos , Animais , Encéfalo/citologia , Encéfalo/embriologia , Imuno-Histoquímica/instrumentação , Vibração
19.
Evodevo ; 5: 41, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25908957

RESUMO

BACKGROUND: Among the Lophotrochozoa, cephalopods possess the highest degree of central nervous system (CNS) centralization and complexity. Although the anatomy of the developing cephalopod CNS has been investigated, the developmental mechanisms underlying brain development and evolution are unknown. POU genes encode key transcription factors controlling nervous system development in a range of bilaterian species, including lophotrochozoans. In this study, we investigate the expression of POU genes during early development of the pygmy squid Idiosepius notoides and make comparisons with other bilaterians to reveal whether these genes have conserved or divergent roles during CNS development in this species. RESULTS: POU2, POU3, POU4 and POU6 orthologs were identified in transcriptomes derived from developmental stages and adult brain tissue of I. notoides. All four POU gene orthologs are expressed in different spatiotemporal combinations in the early embryo. Ino-POU2 is expressed in the gills and the palliovisceral, pedal, and optic ganglia of stage 19 to 20 embryos, whereas the cerebral and palliovisceral ganglia express Ino-POU3. Ino-POU4 is expressed in the optic and palliovisceral ganglia and the arms/intrabrachial ganglia of stage 19 to 20 individuals. Ino-POU6 is expressed in the palliovisceral ganglia during early development. In stage 25 embryos expression domains include the intrabrachial ganglia (Ino-POU3) and the pedal ganglia (Ino-POU6). All four POU genes are strongly expressed in large areas of the brain of stage 24 to 26 individuals. Expression could not be detected in late prehatching embryos (approximately stage 27 to 30). CONCLUSIONS: The expression of four POU genes in unique spatiotemporal combinations during early neurogenesis and sensory organ development of I. notoides suggests that they fulfill distinct tasks during early brain development. Comparisons with other bilaterian species reveal that POU gene expression is associated with anteriormost neural structures, even between animals for which these structures are unlikely to be homologous. Within lophotrochozoans, POU3 and POU4 are the only two genes that have been comparatively investigated. Their expression patterns are broadly similar, indicating that the increased complexity of the cephalopod brain is likely due to other unknown factors.

20.
Evodevo ; 5: 48, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25904999

RESUMO

BACKGROUND: The Solenogastres (or Neomeniomorpha) are a taxon of aplacophoran molluscs with contentious phylogenetic placement. Since available developmental data on non-conchiferan (that is, aculiferan) molluscs mainly stem from polyplacophorans, data on aplacophorans are needed to clarify evolutionary questions concerning the morphological features of the last common ancestor (LCA) of the Aculifera and the entire Mollusca. We therefore investigated the development of the nervous system in two solenogasters, Wirenia argentea and Gymnomenia pellucida, using immunocytochemistry and electron microscopy. RESULTS: Nervous system formation starts simultaneously from the apical and abapical pole of the larva with the development of a few cells of the apical organ and a posterior neurogenic domain. A pair of neurite bundles grows out from both the neuropil of the apical organ and the posterior neurogenic domain. After their fusion in the region of the prototroch, which is innervated by an underlying serotonin-like immunoreactive (-LIR) plexus, the larva exhibits two longitudinal neurite bundles - the future lateral nerve cords. The apical organ in its fully developed state exhibits approximately 8 to 10 flask-shaped cells but no peripheral cells. The entire ventral nervous system, which includes a pair of longitudinal neurite bundles (the future ventral nerve cords) and a serotonin-LIR ventromedian nerve plexus, appears simultaneously and is established after the lateral nervous system. During metamorphosis the apical organ and the prototrochal nerve plexus are lost. CONCLUSIONS: The development of the nervous system in early solenogaster larvae shows striking similarities to other spiralians, especially polychaetes, in exhibiting an apical organ with flask-shaped cells, a single pair of longitudinal neurite bundles, a serotonin-LIR innervation of the prototroch, and formation of these structures from an anterior and a posterior neurogenic domain. This provides evidence for an ancestral spiralian pattern of early nervous system development and a LCA of the Spiralia with a single pair of nerve cords. In later nervous system development, however, the annelids deviate from all other spiralians including solenogasters in forming a posterior growth zone, which initiates teloblastic growth. Since this mode of organogenesis is confined to annelids, we conclude that the LCA of both molluscs and spiralians was unsegmented.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...