Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 16008, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992022

RESUMO

Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible. This eliminates the need for phase stepping and multiple acquisitions, thereby greatly reducing total measurement time for imaging with long acquisition times at low flux or enabling video-rate imaging at higher flux. With this single-frame acquisition technique, we are able to reconstruct transmission images of an object in the infrared beam with a signal-to-noise ratio of 3.680 ± 0.004 at 10 frames per second, and record a dynamic scene in the infrared beam at 33 frames per second.

2.
Sci Rep ; 12(1): 8286, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35585160

RESUMO

Classical light sources emit a randomly-timed stream of individual photons, the spatial distribution of which can be detected with a camera to form an image. Quantum light sources, based on parametric down conversion, emit photons as correlated photon-pairs. The spatial correlations between the photons enables imaging systems where the preferential selection of photon-pairs allows for enhancements in the noise performance over what is possible using classical light sources. However, until now the technical challenge of measuring, and correlating both photons has led to system complexity. Here we show that a camera capable of resolving the number of individual photons in each pixel of the detector array can be used to record an image formed from these photon-pair events and hence achieve a greater contrast than possible using a classical light source. We achieve an enhancement in the ratio of two-photon events compared to one-photon events using spatially correlated SPDC light compared to uncorrelated illumination by a LED. These results indicate the potential advantages of using photon counting cameras in quantum imaging schemes and these advantages will further increase as the technology is developed. Operating in photon sparse regimes such systems have potential applications in low-light microscopy and covert imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA