Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(4)2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36850613

RESUMO

Autonomous take-off and landing on a moving landing pad are extraordinarily complex and challenging functionalities of modern UAVs, especially if they must be performed in windy environments. The article presents research focused on achieving such functionalities for two kinds of UAVs, i.e., a tethered multicopter and VTOL. Both vehicles are supported by a landing pad navigation station, which communicates with their ROS-based onboard computer. The computer integrates navigational data from the UAV and the landing pad navigational station through the utilization of an extended Kalman filter, which is a typical approach in such applications. The novelty of the presented system is extending navigational data with data from the ultra wide band (UWB) system, and this makes it possible to achieve a landing accuracy of about 1 m. In the research, landing tests were carried out in real conditions on a lake for both UAVs. In the tests, a special mobile landing pad was built and based on a barge. The results show that the expected accuracy of 1 m is indeed achieved, and both UAVs are ready to be tested in real conditions on a ferry.

2.
Sensors (Basel) ; 22(11)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35684692

RESUMO

Vibration monitoring provides a good-quality source of information about the health condition of machines, and it is often based on the use of accelerometers. This article focuses on the use of accelerometer sensors in fabricating a low-cost system for monitoring vibrations in agricultural machines, such as rotary tedders. The aim of the study is to provide useful data on equipment health for improving the durability of such machinery. The electronic prototype, based on the low-cost AVR microcontroller ATmega128 with 10-bit ADC performing a 12-bit measurement, is able to acquire data from an accelerometer weighing up to 10 g. Three sensors were exposed to low accelerations with the use of an exciter, and their static characteristics were presented. Standard experimental tests were used to evaluate the constructed machine monitoring system. The self-contained prototype system was calibrated in a laboratory test rig, and sinusoidal and multisinusoidal excitations were used. Measurements in time and frequency domains were carried out. The amplitude characteristic of the preformed system differed by no more than 15% within a frequency range of 10 Hz-10 kHz, compared to the AVM4000 commercial product. Finally, the system was experimentally tested to measure acceleration at three characteristic points in a rotational tedder, i.e., the solid grease gearbox, the drive shaft bearing and the main frame. The RMS amplitude values of the shaft vibrations on the bearing in relation to the change in the drive shaft speed of two tedders of the same type were evaluated and compared. Additionally, the parameters of kurtosis and crest factor were compared to ascertain the bearing condition.


Assuntos
Aceleração , Vibração , Eletrocardiografia , Modalidades de Fisioterapia
3.
Sensors (Basel) ; 21(24)2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34960309

RESUMO

Positioning systems based on the lateration method utilize distance measurements and the knowledge of the location of the beacons to estimate the position of the target object. Although most of the global positioning techniques rely on beacons whose locations are known a priori, miscellaneous factors and disturbances such as obstacles, reflections, signal propagation speed, the orientation of antennas, measurement offsets of the beacons hardware, electromagnetic noise, or delays can affect the measurement accuracy. In this paper, we propose a novel hybrid calibration method based on Neural Networks (NN) and Apparent Beacon Position Estimation (ABPE) to improve the accuracy of a lateration positioning system. The main idea of the proposed method is to use a two-step position correction pipeline that first performs the ABPE step to estimate the perceived positions of the beacons that are used in the standard position estimation algorithm and then corrects these initial estimates by filtering them with a multi-layer feed-forward neural network in the second step. In order to find an optimal neural network, 16 NN architectures with 10 learning algorithms and 12 different activation functions for hidden layers were implemented and tested in the MATLAB environment. The best training outcomes for NNs were then employed in two real-world indoor scenarios: without and with obstacles. With the aim to validate the proposed methodology in a scenario where a fast set-up of the system is desired, we tested eight different uniform sampling patterns to establish the influence of the number of the training samples on the accuracy of the system. The experimental results show that the proposed hybrid NN-ABPE method can achieve a high level of accuracy even in scenarios when a small number of calibration reference points are measured.


Assuntos
Algoritmos , Redes Neurais de Computação , Calibragem , Coleta de Dados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA