Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Front Neurosci ; 18: 1372297, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38572146

RESUMO

Introduction: The study of the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. Methods: The humanized APPNL-G-F knock-in mouse line was crossed to the PS19 MAPTP301S, over-expression mouse line to create the dual APPNL-G-F/PS19 MAPTP301S line. The resulting pathologies were characterized by immunochemical methods and PCR. Results: We now report on a double transgenic APPNL-G-F/PS19 MAPTP301S mouse that at 6 months of age exhibits robust A plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of A pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. MAPT pathology neither changed levels of amyloid precursor protein nor potentiated A accumulation. Interestingly, study of immunofluorescence in cleared brains indicates that microglial inflammation was generally stronger in the hippocampus, dentate gyrus and entorhinal cortex, which are regions with predominant MAPT pathology. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. m6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Discussion: Our understanding of the pathophysiology of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular -amyloid (A) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. The APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging, and thus represents a useful new mouse model for the field.

2.
Hum Mol Genet ; 32(20): 2966-2980, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37522762

RESUMO

Aggregation of TAR DNA-binding protein 43 kDa (TDP-43) is thought to drive the pathophysiology of amyotrophic lateral sclerosis and some frontotemporal dementias. TDP-43 is normally a nuclear protein that in neurons translocates to the cytoplasm and can form insoluble aggregates upon activation of the integrated stress response (ISR). Viruses evolved to control the ISR. In the case of Herpesvirus 8, the protein ORF57 acts to bind protein kinase R, inhibit phosphorylation of eIF2α and reduce activation of the ISR. We hypothesized that ORF57 might also possess the ability to inhibit aggregation of TDP-43. ORF57 was expressed in the neuronal SH-SY5Y line and its effects on TDP-43 aggregation characterized. We report that ORF57 inhibits TDP-43 aggregation by 55% and elicits a 2.45-fold increase in the rate of dispersion of existing TDP-43 granules. These changes were associated with a 50% decrease in cell death. Proteomic studies were carried out to identify the protein interaction network of ORF57. We observed that ORF57 directly binds to TDP-43 as well as interacts with many components of the ISR, including elements of the proteostasis machinery known to reduce TDP-43 aggregation. We propose that viral proteins designed to inhibit a chronic ISR can be engineered to remove aggregated proteins and dampen a chronic ISR.


Assuntos
Esclerose Lateral Amiotrófica , Herpesvirus Humano 8 , Neuroblastoma , Humanos , Herpesvirus Humano 8/metabolismo , Proteômica , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Linhagem Celular , Esclerose Lateral Amiotrófica/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
Cell Rep ; 42(8): 112822, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37471224

RESUMO

C9orf72 repeat expansions are the most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). Poly(GR) proteins are toxic to neurons by forming cytoplasmic inclusions that sequester RNA-binding proteins including stress granule (SG) proteins. However, little is known of the factors governing poly(GR) inclusion formation. Here, we show that poly(GR) infiltrates a finely tuned network of protein-RNA interactions underpinning SG formation. It interacts with G3BP1, the key driver of SG assembly and a protein we found is critical for poly(GR) inclusion formation. Moreover, we discovered that N6-methyladenosine (m6A)-modified mRNAs and m6A-binding YTHDF proteins not only co-localize with poly(GR) inclusions in brains of c9FTD/ALS mouse models and patients with c9FTD, they promote poly(GR) inclusion formation via the incorporation of RNA into the inclusions. Our findings thus suggest that interrupting interactions between poly(GR) and G3BP1 or YTHDF1 proteins or decreasing poly(GR) altogether represent promising therapeutic strategies to combat c9FTD/ALS pathogenesis.


Assuntos
Esclerose Lateral Amiotrófica , Demência Frontotemporal , Animais , Camundongos , Humanos , Esclerose Lateral Amiotrófica/patologia , DNA Helicases/metabolismo , Grânulos de Estresse , Expansão das Repetições de DNA , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Demência Frontotemporal/metabolismo , Corpos de Inclusão/metabolismo , Proteínas de Choque Térmico/metabolismo , RNA/metabolismo , Proteína C9orf72/genética , Proteína C9orf72/metabolismo
4.
Res Sq ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292629

RESUMO

The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.

5.
Light Sci Appl ; 12(1): 147, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37322011

RESUMO

Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the ß-sheet for tau fibril structure is achieved.

6.
bioRxiv ; 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-37034774

RESUMO

The study for the pathophysiology study of Alzheimer's disease (AD) has been hampered by lack animal models that recapitulate the major AD pathologies, including extracellular ß-amyloid (Aß) deposition, intracellular aggregation of microtubule associated protein tau (MAPT), inflammation and neurodegeneration. We now report on a double transgenic APPNL-G-F MAPTP301S mouse that at 6 months of age exhibits robust Aß plaque accumulation, intense MAPT pathology, strong inflammation and extensive neurodegeneration. The presence of Aß pathology potentiated the other major pathologies, including MAPT pathology, inflammation and neurodegeneration. However, MAPT pathology neither changed levels of amyloid precursor protein nor potentiated Aß accumulation. The APPNL-G-F/MAPTP301S mouse model also showed strong accumulation of N6-methyladenosine (m6A), which was recently shown to be elevated in the AD brain. M6A primarily accumulated in neuronal soma, but also co-localized with a subset of astrocytes and microglia. The accumulation of m6A corresponded with increases in METTL3 and decreases in ALKBH5, which are enzymes that add or remove m6A from mRNA, respectively. Thus, the APPNL-G-F/MAPTP301S mouse recapitulates many features of AD pathology beginning at 6 months of aging.

7.
ArXiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-36866226

RESUMO

Amyloid proteins are associated with a broad spectrum of neurodegenerative diseases. However, it remains a grand challenge to extract molecular structure information from intracellular amyloid proteins in their native cellular environment. To address this challenge, we developed a computational chemical microscope integrating 3D mid-infrared photothermal imaging with fluorescence imaging, termed Fluorescence-guided Bond-Selective Intensity Diffraction Tomography (FBS-IDT). Based on a low-cost and simple optical design, FBS-IDT enables chemical-specific volumetric imaging and 3D site-specific mid-IR fingerprint spectroscopic analysis of tau fibrils, an important type of amyloid protein aggregates, in their intracellular environment. Label-free volumetric chemical imaging of human cells with/without seeded tau fibrils is demonstrated to show the potential correlation between lipid accumulation and tau aggregate formation. Depth-resolved mid-infrared fingerprint spectroscopy is performed to reveal the protein secondary structure of the intracellular tau fibrils. 3D visualization of the \b{eta}-sheet for tau fibril structure is achieved.

8.
Alzheimers Dement ; 19(8): 3389-3405, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36795937

RESUMO

INTRODUCTION: Circular RNAs (circRNAs) exhibit selective expression in the brain and differential regulation in Alzheimer's disease (AD). To explore the role of circRNAs in AD, we investigated how circRNA expression varies between brain regions and with AD-related stress in human neuronal precursor cells (NPCs). METHODS: Ribosomal RNA-depleted hippocampus RNA-sequencing data were generated. Differentially regulated circRNAs in AD and related dementias were detected using CIRCexplorer3 and limma. circRNA results were validated using quantitative real-time PCR of cDNA from the brain and NPCs. RESULTS: We identified 48 circRNAs that were significantly associated with AD. We observed that circRNA expression differed by dementia subtype. Using NPCs, we demonstrated that exposure to oligomeric tau elicits downregulation of circRNA similar to that observed in the AD brain. DISCUSSION: Our study shows that differential expression of circRNA can vary by dementia subtype and brain region. We also demonstrated that circRNAs can be regulated by AD-linked neuronal stress independently from their cognate linear messenger RNAs (mRNAs).


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Doença de Alzheimer/genética , MicroRNAs/genética , RNA Mensageiro/metabolismo , Regulação para Baixo
9.
Sci Adv ; 9(5): eadd9789, 2023 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-36724228

RESUMO

Alzheimer's disease and related tauopathies are characterized by the pathogenic misfolding and aggregation of the microtubule-associated protein tau. Understanding how endogenous chaperones modulate tau misfolding could guide future therapies. Here, we show that the immunophilin FKBP12, the 12-kDa FK506-binding protein (also known as FKBP prolyl isomerase 1A), regulates the neuronal resilience by chaperoning a specific structure in monomeric tau. Using a combination of mouse and cell experiments, in vitro aggregation experiments, nuclear magnetic resonance-based structural analysis of monomeric tau, site-specific phosphorylation and mutation, as well as structure-based analysis using the neural network-based structure prediction program AlphaFold, we define the molecular factors that govern the binding of FKBP12 to tau and its influence on tau-induced neurotoxicity. We further demonstrate that tyrosine phosphorylation of tau blocks the binding of FKBP12 to two highly specific structural motifs in tau. Our data together with previous results demonstrating FKBP12/tau colocalization in neurons and neurofibrillary tangles support a critical role of FKBP12 in regulating tau pathology.


Assuntos
Doença de Alzheimer , Tauopatias , Humanos , Proteína 1A de Ligação a Tacrolimo/metabolismo , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Tauopatias/metabolismo , Neurônios/metabolismo , Chaperonas Moleculares/metabolismo
10.
bioRxiv ; 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38168279

RESUMO

Sequestosome1 (SQSTM1) is an autophagy receptor that mediates degradation of intracellular cargo, including protein aggregates, through multiple protein interactions. These interactions form the SQSTM1 protein network that are mediated by SQSTM1 functional interaction domains, which include LIR, PB1, UBA and KIR. Despite various attempts to unravel the complexity of the SQSTM1 protein network, our understanding of the relationship of various components in cellular physiology and disease states continues to evolve. To investigate the SQSTM1 protein interaction network, we performed proximity profile labeling by fusing TurboID with the human protein SQSTM1 (TurboID::SQSTM1). This chimeric protein displayed well-established SQSTM1 features including: production of SQSTM1 intracellular bodies, binding to known SQSTM1 interacting partners via defined functional SQSTM1 interacting domains and capture of novel SQSTM1 interactors. Strikingly, aggregated tau protein altered the protein interaction network of SQSTM1 to include many stress-associated proteins. Overall, our work reveals the dynamic landscape of the SQSTM1 protein network and offers a resource to study SQSTM1 function in cellular physiology and disease state.

11.
Nat Commun ; 13(1): 6275, 2022 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-36271092

RESUMO

The use of iPSC derived brain organoid models to study neurodegenerative disease has been hampered by a lack of systems that accurately and expeditiously recapitulate pathogenesis in the context of neuron-glial interactions. Here we report development of a system, termed AstTau, which propagates toxic human tau oligomers in iPSC derived neuron-astrocyte assembloids. The AstTau system develops much of the neuronal and astrocytic pathology observed in tauopathies including misfolded, phosphorylated, oligomeric, and fibrillar tau, strong neurodegeneration, and reactive astrogliosis. Single cell transcriptomic profiling combined with immunochemistry characterizes a model system that can more closely recapitulate late-stage changes in adult neurodegeneration. The transcriptomic studies demonstrate striking changes in neuroinflammatory and heat shock protein (HSP) chaperone systems in the disease process. Treatment with the HSP90 inhibitor PU-H71 is used to address the putative dysfunctional HSP chaperone system and produces a strong reduction of pathology and neurodegeneration, highlighting the potential of AstTau as a rapid and reproducible tool for drug discovery.


Assuntos
Doenças Neurodegenerativas , Tauopatias , Humanos , Astrócitos/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Doenças Neurodegenerativas/metabolismo , Transcriptoma , Tauopatias/metabolismo , Neurônios/metabolismo , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo
12.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010666

RESUMO

The role of protein misfolding, deposition, and clearance has been the dominant topic in the last decades of investigation in the field of neurodegeneration. The impairment of protein synthesis, along with RNA metabolism and RNA granules, however, are significantly emerging as novel potential targets for the comprehension of the molecular events leading to neuronal deficits. Indeed, defects in ribosome activity, ribosome stalling, and PQC-all ribosome-related processes required for proteostasis regulation-can contribute to triggering stress conditions and promoting the formation of stress granules (SGs) that could evolve in the formation of pathological granules, usually occurring during neurodegenerating effects. In this review, the interplay between proteostasis, mRNA metabolism, and SGs has been explored in a neurodegenerative context with a focus on Alzheimer's disease (AD), although some defects in these same mechanisms can also be found in frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are discussed here. Finally, we highlight the role of the receptor for activated C kinase 1 (RACK1) in these pathologies and note that, besides its well characterized function as a scaffold protein, it has an important role in translation and can associate to stress granules (SGs) determining cell fate in response to diverse stress stimuli.


Assuntos
Demência Frontotemporal , Proteínas Ribossômicas , Grânulos Citoplasmáticos/metabolismo , Demência Frontotemporal/metabolismo , Humanos , Proteínas de Neoplasias/metabolismo , Proteostase , Receptores de Quinase C Ativada/metabolismo , Proteínas Ribossômicas/metabolismo , Grânulos de Estresse
13.
Aging Cell ; 20(11): e13501, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34687487

RESUMO

In chronic peripheral inflammation, endothelia in brain capillary beds could play a role for the apolipoprotein E4 (ApoE4)-mediated risk for Alzheimer's disease (AD) risk. Using human brain tissues, here we demonstrate that the interactions of endothelial CD31 with monomeric C-reactive protein (mCRP) versus ApoE were linked with shortened neurovasculature for AD pathology and cognition. Using ApoE knock-in mice, we discovered that intraperitoneal injection of mCRP, via binding to CD31 on endothelial surface and increased CD31 phosphorylation (pCD31), leading to cerebrovascular damage and the extravasation of T lymphocytes into the ApoE4 brain. While mCRP was bound to endothelial CD31 in a dose- and time-dependent manner, knockdown of CD31 significantly decreased mCRP binding and altered the expressions of vascular-inflammatory factors including vWF, NF-κB and p-eNOS. RNAseq revealed endothelial pathways related to oxidative phosphorylation and AD pathogenesis were enhanced, but endothelial pathways involving in epigenetics and vasculogenesis were inhibited in ApoE4. This is the first report providing some evidence on the ApoE4-mCRP-CD31 pathway for the cross talk between peripheral inflammation and cerebrovasculature leading to AD risk.


Assuntos
Doença de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Proteína C-Reativa/metabolismo , Células Endoteliais/metabolismo , Genótipo , Molécula-1 de Adesão Celular Endotelial a Plaquetas/metabolismo , Transdução de Sinais/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Encéfalo/metabolismo , Proteína C-Reativa/administração & dosagem , Estudos de Casos e Controles , Células Cultivadas , Feminino , Técnicas de Introdução de Genes , Técnicas de Silenciamento de Genes , Humanos , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Fosforilação Oxidativa/efeitos dos fármacos , Molécula-1 de Adesão Celular Endotelial a Plaquetas/genética , Fatores de Risco , Transdução de Sinais/efeitos dos fármacos
14.
Mol Cell ; 81(20): 4209-4227.e12, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34453888

RESUMO

The microtubule-associated protein tau oligomerizes, but the actions of oligomeric tau (oTau) are unknown. We have used Cry2-based optogenetics to induce tau oligomers (oTau-c). Optical induction of oTau-c elicits tau phosphorylation, aggregation, and a translational stress response that includes stress granules and reduced protein synthesis. Proteomic analysis identifies HNRNPA2B1 as a principle target of oTau-c. The association of HNRNPA2B1 with endogenous oTau was verified in neurons, animal models, and human Alzheimer brain tissues. Mechanistic studies demonstrate that HNRNPA2B1 functions as a linker, connecting oTau with N6-methyladenosine (m6A) modified RNA transcripts. Knockdown of HNRNPA2B1 prevents oTau or oTau-c from associating with m6A or from reducing protein synthesis and reduces oTau-induced neurodegeneration. Levels of m6A and the m6A-oTau-HNRNPA2B1 complex are increased up to 5-fold in the brains of Alzheimer subjects and P301S tau mice. These results reveal a complex containing oTau, HNRNPA2B1, and m6A that contributes to the integrated stress response of oTau.


Assuntos
Adenosina/análogos & derivados , Doença de Alzheimer/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Processamento Pós-Transcricional do RNA , RNA/metabolismo , Proteínas tau/metabolismo , Adenosina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Estudos de Casos e Controles , Modelos Animais de Doenças , Progressão da Doença , Feminino , Células HEK293 , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Humanos , Masculino , Metilação , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Pessoa de Meia-Idade , Agregados Proteicos , Agregação Patológica de Proteínas , RNA/genética , Índice de Gravidade de Doença , Proteínas tau/genética
15.
Proc Natl Acad Sci U S A ; 118(9)2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619090

RESUMO

Tau protein plays an important role in the biology of stress granules and in the stress response of neurons, but the nature of these biochemical interactions is not known. Here we show that the interaction of tau with RNA and the RNA binding protein TIA1 is sufficient to drive phase separation of tau at physiological concentrations, without the requirement for artificial crowding agents such as polyethylene glycol (PEG). We further show that phase separation of tau in the presence of RNA and TIA1 generates abundant tau oligomers. Prior studies indicate that recombinant tau readily forms oligomers and fibrils in vitro in the presence of polyanionic agents, including RNA, but the resulting tau aggregates are not particularly toxic. We discover that tau oligomers generated during copartitioning with TIA1 are significantly more toxic than tau aggregates generated by incubation with RNA alone or phase-separated tau complexes generated by incubation with artificial crowding agents. This pathway identifies a potentially important source for generation of toxic tau oligomers in tau-related neurodegenerative diseases. Our results also reveal a general principle that phase-separated RBP droplets provide a vehicle for coassortment of selected proteins. Tau selectively copartitions with TIA1 under physiological conditions, emphasizing the importance of TIA1 for tau biology. Other RBPs, such as G3BP1, are able to copartition with tau, but this happens only in the presence of crowding agents. This type of selective mixing might provide a basis through which membraneless organelles bring together functionally relevant proteins to promote particular biological activities.


Assuntos
Agregados Proteicos , Agregação Patológica de Proteínas , Multimerização Proteica , Antígeno-1 Intracelular de Células T/metabolismo , Proteínas tau/metabolismo , Amiloide/química , Amiloide/metabolismo , Humanos , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/patologia , Neurônios/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas com Motivo de Reconhecimento de RNA/química , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Proteínas Recombinantes , Proteínas tau/química
17.
J Gerontol A Biol Sci Med Sci ; 76(3): 491-498, 2021 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175128

RESUMO

BACKGROUND: Shorter leukocyte telomere length (LTL) is associated with aging and dementia. Impact of lifestyle changes on LTL, and relation to cognition and genetic susceptibility for dementia, has not been investigated in randomized controlled trials (RCTs). METHODS: Finnish Geriatric Intervention Study to Prevent Cognitive Impairment and Disability is a 2-year RCT enrolling 1260 participants at risk for dementia from the general population, aged 60-77 years, randomly assigned (1:1) to multidomain lifestyle intervention or control group. The primary outcome was cognitive change (Neuropsychological Test Battery z-score). Relative LTL was measured using quantitative real-time polymerase chain reaction (trial registration: NCT01041989). RESULTS: This exploratory LTL substudy included 756 participants (377 intervention, 379 control) with baseline and 24-month LTL measurements. The mean annual LTL change (SD) was -0.016 (0.19) in the intervention group and -0.023 (0.17) in the control group. Between-group difference was nonsignificant (unstandardized ß-coefficient 0.007, 95% CI -0.015 to 0.030). Interaction analyses indicated better LTL maintenance among apolipoprotein E (APOE)-ε4 carriers versus noncarriers: 0.054 (95% CI 0.007 to 0.102); younger versus older participants: -0.005 (95% CI -0.010 to -0.001); and those with more versus less healthy lifestyle changes: 0.047 (95% CI 0.005 to 0.089). Cognitive intervention benefits were more pronounced among participants with better LTL maintenance for executive functioning (0.227, 95% CI 0.057 to 0.396) and long-term memory (0.257, 95% CI 0.024 to 0.489), with a similar trend for Neuropsychological Test Battery total score (0.127, 95% CI -0.011 to 0.264). CONCLUSIONS: This is the first large RCT showing that a multidomain lifestyle intervention facilitated LTL maintenance among subgroups of older people at risk for dementia, including APOE-ε4 carriers. LTL maintenance was associated with more pronounced cognitive intervention benefits. CLINICAL TRIALS REGISTRATION NUMBER: NCT01041989.


Assuntos
Disfunção Cognitiva/prevenção & controle , Leucócitos/fisiologia , Estilo de Vida , Homeostase do Telômero/fisiologia , Idoso , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/etiologia , Exercício Físico , Feminino , Finlândia , Comportamentos Relacionados com a Saúde , Humanos , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Educação de Pacientes como Assunto
18.
Proteomics ; 21(3-4): e1900311, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33314619

RESUMO

Mapping the intricate networks of cellular proteins in the human brain has the potential to address unsolved questions in molecular neuroscience, including the molecular basis of cognition, synaptic plasticity, long-term potentiation, learning, and memory. Perturbations to the protein-protein interaction networks (PPIN) present in neurons, glia, and other cell-types have been linked to multifactorial neurological disorders. Yet while knowledge of brain PPINs is steadily improving, the complexity and dynamic nature of the heterogeneous central nervous system in normal and disease contexts poses a formidable experimental challenge. In this review, the recent applications of functional proteomics and systems biology approaches to study PPINs central to normal neuronal function, during neurodevelopment, and in neurodegenerative disorders are summarized. How systematic PPIN analysis offers a unique mechanistic framework to explore intra- and inter-cellular functional modules governing neuronal activity and brain function is also discussed. Finally, future technological advancements needed to address outstanding questions facing neuroscience are outlined.


Assuntos
Mapas de Interação de Proteínas , Humanos , Neuroglia , Plasticidade Neuronal , Neurônios , Biologia de Sistemas
19.
Mol Cell ; 80(6): 1104-1122.e9, 2020 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-33259812

RESUMO

Human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), causative pathogen of the COVID-19 pandemic, exerts a massive health and socioeconomic crisis. The virus infects alveolar epithelial type 2 cells (AT2s), leading to lung injury and impaired gas exchange, but the mechanisms driving infection and pathology are unclear. We performed a quantitative phosphoproteomic survey of induced pluripotent stem cell-derived AT2s (iAT2s) infected with SARS-CoV-2 at air-liquid interface (ALI). Time course analysis revealed rapid remodeling of diverse host systems, including signaling, RNA processing, translation, metabolism, nuclear integrity, protein trafficking, and cytoskeletal-microtubule organization, leading to cell cycle arrest, genotoxic stress, and innate immunity. Comparison to analogous data from transformed cell lines revealed respiratory-specific processes hijacked by SARS-CoV-2, highlighting potential novel therapeutic avenues that were validated by a high hit rate in a targeted small molecule screen in our iAT2 ALI system.


Assuntos
Células Epiteliais Alveolares/metabolismo , COVID-19/metabolismo , Fosfoproteínas/metabolismo , Proteoma/metabolismo , SARS-CoV-2/metabolismo , Células Epiteliais Alveolares/patologia , Células Epiteliais Alveolares/virologia , Animais , Antivirais , COVID-19/genética , COVID-19/patologia , Chlorocebus aethiops , Efeito Citopatogênico Viral , Citoesqueleto , Avaliação Pré-Clínica de Medicamentos , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes Induzidas/patologia , Células-Tronco Pluripotentes Induzidas/virologia , Fosfoproteínas/genética , Transporte Proteico , Proteoma/genética , SARS-CoV-2/genética , Transdução de Sinais , Células Vero , Tratamento Farmacológico da COVID-19
20.
Front Neurol ; 11: 579434, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33101187

RESUMO

Tau aggregates are pleiotropic and exhibit differences in conformation, structure, and size. These aggregates develop endogenously but are also propagated among neurons in disease. We explored the actions of two distinct types of tau aggregates, tau oligomers (oTau) and tau fibrils (fTau), using a seeding assay in primary neuron cultures expressing human 4R0N tau. We find that oTau and fTau elicit distinct patterns of tau inclusions in the neurons and distinct molecular interactions. The exogenously applied oTau and fTau both clear rapidly from the neurons, but both also seed intracellular inclusions composed of endogenously produced tau. The two types of seeds elicit differential dose-response relationships for seed uptake and the number of resulting intracellular inclusions. Immunocytochemical studies show that co-localization with RNA binding proteins associated with stress granules is much greater for seeds composed of oTau than fTau. Conversely, co-localization with p62/SQSTM1 and thioflavine S is much greater for fTau than oTau. These results suggest that oTau seeds inclusions that modulate the translational stress response and are physiologically active, whereas fTau seeds inclusions that are fibrillar and shunted to the autolysosomal cascade.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...