Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Neurosci ; 25(4): 493-503, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35383330

RESUMO

The hippocampus is the most common seizure focus in people. In the hippocampus, aberrant neurogenesis plays a critical role in the initiation and progression of epilepsy in rodent models, but it is unknown whether this also holds true in humans. To address this question, we used immunofluorescence on control healthy hippocampus and surgical resections from mesial temporal lobe epilepsy (MTLE), plus neural stem-cell cultures and multi-electrode recordings of ex vivo hippocampal slices. We found that a longer duration of epilepsy is associated with a sharp decline in neuronal production and persistent numbers in astrogenesis. Further, immature neurons in MTLE are mostly inactive, and are not observed in cases with local epileptiform-like activity. However, immature astroglia are present in every MTLE case and their location and activity are dependent on epileptiform-like activity. Immature astroglia, rather than newborn neurons, therefore represent a potential target to continually modulate adult human neuronal hyperactivity.


Assuntos
Epilepsia do Lobo Temporal , Epilepsia , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Neurogênese , Convulsões
2.
Sci Rep ; 10(1): 1979, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029778

RESUMO

Most single cell RNA sequencing protocols start with single cells dispersed from intact tissue. High-throughput processing of the separated cells is enabled using microfluidics platforms. However, dissociation of tissue results in loss of information about cell location and morphology and potentially alters the transcriptome. An alternative approach for collecting RNA from single cells is to re-purpose the electrophysiological technique of patch clamp recording. A hollow patch pipette is attached to individual cells, enabling the recording of electrical activity, after which the cytoplasm may be extracted for single cell RNA-Seq ("Patch-Seq"). Since the tissue is not disaggregated, the location of cells is readily determined, and the morphology of the cells is maintained, making possible the correlation of single cell transcriptomes with cell location, morphology and electrophysiology. Recent Patch-Seq studies utilizes PCR amplification to increase amount of nucleic acid material to the level required for current sequencing technologies. PCR is prone to create biased libraries - especially with the extremely high degrees of exponential amplification required for single cell amounts of RNA. We compared a PCR-based approach with linear amplifications and demonstrate that aRNA amplification (in vitro transcription, IVT) is more sensitive and robust for single cell RNA collected by a patch clamp pipette.


Assuntos
Técnicas de Patch-Clamp/métodos , RNA Antissenso/isolamento & purificação , RNA-Seq/métodos , Análise de Célula Única/métodos , Adulto , Encéfalo/citologia , Humanos , Neurônios , Reação em Cadeia da Polimerase , RNA Antissenso/genética
3.
Sci Rep ; 7(1): 14883, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29093521

RESUMO

Zika virus (ZIKV) infection is associated with microcephaly in fetuses, but the pathogenesis of ZIKV-related microcephaly is not well understood. Here we show that ZIKV infects the subventricular zone in human fetal brain tissues and that the tissue tropism broadens with the progression of gestation. Our research demonstrates also that intermediate progenitor cells (IPCs) are the main target cells for ZIKV. Post-mitotic committed neurons become susceptible to ZIKV infection as well at later stages of gestation. Furthermore, activation of microglial cells, DNA fragmentation, and apoptosis of infected or uninfected cells could be found in ZIKV-infected brain tissues. Our studies identify IPCs as the main target cells for ZIKV. They also suggest that immune activation after ZIKV infection may play an important role in the pathogenesis of ZIKV-related microcephaly.


Assuntos
Encéfalo/virologia , Feto/virologia , Neurônios/virologia , Células-Tronco/virologia , Infecção por Zika virus/patologia , Zika virus , Encéfalo/embriologia , Encéfalo/patologia , Feminino , Feto/patologia , Humanos , Imunidade Inata , Microcefalia/etiologia , Mitose , Gravidez , Técnicas de Cultura de Tecidos , Infecção por Zika virus/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...