Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci Alliance ; 6(2)2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36622344

RESUMO

The leading strand-oriented alternative PCNA clamp loader DSCC1-RFC functions in DNA replication, repair, and sister chromatid cohesion (SCC), but how it facilitates these processes is incompletely understood. Here, we confirm that loss of human DSCC1 results in reduced fork speed, increased DNA damage, and defective SCC. Genome-wide CRISPR screens in DSCC1-KO cells reveal multiple synthetically lethal interactions, enriched for DNA replication and cell cycle regulation. We show that DSCC1-KO cells require POLE3 for survival. Co-depletion of DSCC1 and POLE3, which both interact with the catalytic polymerase ε subunit, additively impair DNA replication, suggesting that these factors contribute to leading-strand DNA replication in parallel ways. An additional hit is MMS22L, which in humans forms a heterodimer with TONSL. Synthetic lethality of DSCC1 and MMS22L-TONSL likely results from detrimental SCC loss. We show that MMS22L-TONSL, like DDX11, functions in a SCC establishment pathway parallel to DSCC1-RFC. Because both DSCC1-RFC and MMS22L facilitate ESCO2 recruitment to replication forks, we suggest that distinct ESCO2 recruitment pathways promote SCC establishment following either cohesin conversion or de novo cohesin loading.


Assuntos
Cromátides , Replicação do DNA , Humanos , Cromátides/genética , Cromátides/metabolismo , Replicação do DNA/genética , Segregação de Cromossomos/genética , Pontos de Checagem do Ciclo Celular , Dano ao DNA/genética , DNA Polimerase III/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Nucleoproteínas/genética , Nucleoproteínas/metabolismo , DNA Helicases/genética , RNA Helicases DEAD-box/metabolismo , NF-kappa B/metabolismo
2.
Elife ; 102021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-33459596

RESUMO

Germline mutations in the Folliculin (FLCN) tumor suppressor gene cause Birt-Hogg-Dubé (BHD) syndrome, a rare autosomal dominant disorder predisposing carriers to kidney tumors. FLCN is a conserved, essential gene linked to diverse cellular processes but the mechanism by which FLCN prevents kidney cancer remains unknown. Here, we show that disrupting FLCN in human renal tubular epithelial cells (RPTEC/TERT1) activates TFE3, upregulating expression of its E-box targets, including RRAGD and GPNMB, without modifying mTORC1 activity. Surprisingly, the absence of FLCN or its binding partners FNIP1/FNIP2 induces interferon response genes independently of interferon. Mechanistically, FLCN loss promotes STAT2 recruitment to chromatin and slows cellular proliferation. Our integrated analysis identifies STAT1/2 signaling as a novel target of FLCN in renal cells and BHD tumors. STAT1/2 activation appears to counterbalance TFE3-directed hyper-proliferation and may influence immune responses. These findings shed light on unique roles of FLCN in human renal tumorigenesis and pinpoint candidate prognostic biomarkers.


Assuntos
Proteínas de Transporte/genética , Células Epiteliais/metabolismo , Rim/metabolismo , Proteínas Proto-Oncogênicas/genética , Proteínas Supressoras de Tumor/genética , Proteínas de Transporte/metabolismo , Mutação em Linhagem Germinativa , Humanos , Interferons/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
EMBO Rep ; 21(1): e48460, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31782600

RESUMO

The cellular response to DNA breaks is influenced by chromatin compaction. To identify chromatin regulators involved in the DNA damage response, we screened for genes that affect recovery following DNA damage using an RNAi library of chromatin regulators. We identified genes involved in chromatin remodeling, sister chromatid cohesion, and histone acetylation not previously associated with checkpoint recovery. Among these is the PHD finger protein 6 (PHF6), a gene mutated in Börjeson-Forssman-Lehmann syndrome and leukemic cancers. We find that loss of PHF6 dramatically compromises checkpoint recovery in G2 phase cells. Moreover, PHF6 is rapidly recruited to sites of DNA lesions in a PARP-dependent manner and required for efficient DNA repair through classical non-homologous end joining. These results indicate that PHF6 is a novel DNA damage response regulator that promotes end joining-mediated repair, thereby stimulating timely recovery from the G2 checkpoint.


Assuntos
Hipogonadismo , Deficiência Intelectual Ligada ao Cromossomo X , Proteínas Repressoras/genética , Linhagem Celular Tumoral , Reparo do DNA por Junção de Extremidades , Pontos de Checagem da Fase G2 do Ciclo Celular , Transtornos do Crescimento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...