Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Neurosci ; 16: 769347, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35197825

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that is the most common form of dementia in aged populations. A substantial amount of data demonstrates that chronic neuroinflammation can accelerate neurodegenerative pathologies. In AD, chronic neuroinflammation results in the upregulation of cyclooxygenase and increased production of prostaglandin H2, a precursor for many vasoactive prostanoids. While it is well-established that many prostaglandins can modulate the progression of neurodegenerative disorders, the role of prostacyclin (PGI2) in the brain is poorly understood. We have conducted studies to assess the effect of elevated prostacyclin biosynthesis in a mouse model of AD. Upregulated prostacyclin expression significantly worsened multiple measures associated with amyloid-ß (Aß) disease pathologies. Mice overexpressing both Aß and PGI2 exhibited impaired learning and memory and increased anxiety-like behavior compared with non-transgenic and PGI2 control mice. PGI2 overexpression accelerated the development of Aß accumulation in the brain and selectively increased the production of soluble Aß42. PGI2 damaged the microvasculature through alterations in vascular length and branching; Aß expression exacerbated these effects. Our findings demonstrate that chronic prostacyclin expression plays a novel and unexpected role that hastens the development of the AD phenotype.

2.
Biomed Opt Express ; 11(1): 99-108, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010503

RESUMO

Immunohistochemical techniques, such as immunofluorescence (IF) staining, enable microscopic imaging of local protein expression within tissue samples. Molecular profiling enabled by IF is critical to understanding pathogenesis and is often involved in complex diagnoses. A recent innovation, known as microscopy with ultraviolet surface excitation (MUSE), uses deep ultraviolet (≈280 nm) illumination to excite labels at the tissue surface, providing equivalent images without fixation, embedding, and sectioning. However, MUSE has not yet been integrated into traditional IF pipelines. This limits its application in more complex diagnoses that rely on protein-specific markers. This paper aims to broaden the applicability of MUSE to multiplex immunohistochemistry using quantum dot nanoparticles. We demonstrate the advantages of quantum dot labels for protein-specific MUSE imaging on both paraffin-embedded and intact tissue, significantly expanding MUSE applicability to protein-specific applications. Furthermore, with recent innovations in three-dimensional ultraviolet fluorescence microscopy, this opens the door to three-dimensional IF imaging with quantum dots using ultraviolet excitation.

3.
IEEE Trans Vis Comput Graph ; 25(4): 1760-1773, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-29993636

RESUMO

Advances in high-throughput imaging allow researchers to collect three-dimensional images of whole organ microvascular networks. These extremely large images contain networks that are highly complex, time consuming to segment, and difficult to visualize. In this paper, we present a framework for segmenting and visualizing vascular networks from terabyte-sized three-dimensional images collected using high-throughput microscopy. While these images require terabytes of storage, the volume devoted to the fiber network is ≈ 4 percent of the total volume size. While the networks themselves are sparse, they are tremendously complex, interconnected, and vary widely in diameter. We describe a parallel GPU-based predictor-corrector method for tracing filaments that is robust to noise and sampling errors common in these data sets. We also propose a number of visualization techniques designed to convey the complex statistical descriptions of fibers across large tissue sections-including commonly studied microvascular characteristics, such as orientation and volume.


Assuntos
Imageamento Tridimensional/métodos , Microvasos/diagnóstico por imagem , Algoritmos , Animais , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Gráficos por Computador , Camundongos , Microscopia
4.
Sci Rep ; 8(1): 9813, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29955078

RESUMO

Impairment of neuronal proteostasis is a hallmark of Alzheimer's and other neurodegenerative diseases. However, the underlying molecular mechanisms leading to pathogenic protein aggregation, and the role of secretory chaperone proteins in this process, are poorly understood. We have previously shown that the neural-and endocrine-specific secretory chaperone 7B2 potently blocks in vitro fibrillation of Aß42. To determine whether 7B2 can function as a chaperone in vivo, we measured plaque formation and performed behavioral assays in 7B2-deficient mice in an hAPPswe/PS1dE9 Alzheimer's model mouse background. Surprisingly, immunocytochemical analysis of cortical levels of thioflavin S- and Aß-reactive plaques showed that APP mice with a partial or complete lack of 7B2 expression exhibited a significantly lower number and burden of thioflavin S-reactive, as well as Aß-immunoreactive, plaques. However, 7B2 knockout did not affect total brain levels of either soluble or insoluble Aß. While hAPP model mice performed poorly in the Morris water maze, their brain 7B2 levels did not impact performance. Since 7B2 loss reduced amyloid plaque burden, we conclude that brain 7B2 can impact Aß disposition in a manner that facilitates plaque formation. These results are reminiscent of prior findings in hAPP model mice lacking the ubiquitous secretory chaperone clusterin.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Proteína Secretora Neuroendócrina 7B2/deficiência , Placa Amiloide/metabolismo , Placa Amiloide/patologia , Animais , Benzotiazóis/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/fisiopatologia , Clusterina/metabolismo , Modelos Animais de Doenças , Feminino , Genótipo , Heterozigoto , Humanos , Memória , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Secretora Neuroendócrina 7B2/genética , Proteína Secretora Neuroendócrina 7B2/metabolismo , Placa Amiloide/imunologia , Placa Amiloide/fisiopatologia , Solubilidade , Transgenes
5.
Biomed Opt Express ; 9(2): 603-615, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29552397

RESUMO

Fluorescence-based expansion microscopy (ExM) is a new technique which can yield nanoscale resolution of biological specimen on a conventional fluorescence microscope through physical sample expansion up to 20 times its original dimensions while preserving structural information. It however inherits known issues of fluorescence microscopy such as photostability and multiplexing capabilities, as well as an ExM-specific issue in signal intensity reduction due to a dilution effect after expansion. To address these issues, we propose using antigen-targeting plasmonic nanoparticle labels which can be imaged using surface-enhanced Raman scattering spectroscopy (SERS) and dark-field spectroscopy. We demonstrate that the nanoparticles enable multimodal imaging: bright-field, dark-field and SERS, with excellent photostability, contrast enhancement and brightness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...