Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biosens Bioelectron ; 258: 116327, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38703496

RESUMO

Proper customization in size and shape is essential in implantable bioelectronics for stable bio-signal recording. Over the past decades, many researchers have heavily relied on conventional photolithography processes to fabricate implantable bioelectronics. Therefore, they could not avoid the critical limitation of high cost and complex processing steps to optimize bioelectronic devices for target organs with various sizes and shapes. Here, we propose rapid prototyping using all laser processes to fabricate customized bioelectronics. PEDOT:PSS is selectively irradiated by an ultraviolet (UV) pulse laser to form wet-stable conductive hydrogels that can softly interact with biological tissues (50 µm line width). The encapsulation layer is selectively patterned using the same laser source by UV-curing polymer networks (110 µm line width). For high stretchability (over 100%), mesh structures are made by the selective laser cutting process. Our rapid prototyping strategy minimizes the use of high-cost equipment, using only a single UV laser source to process the electrodes, encapsulation, and substrates that constitute bioelectronics without a photomask, enabling the prototyping stretchable microelectrode array with an area of 1 cm2 less than 10 min. We fabricated an optimized stretchable microelectrode array with low impedances (∼1.1 kΩ at 1 kHz) that can effectively record rat's cardiac signals with various health states.


Assuntos
Técnicas Biossensoriais , Condutividade Elétrica , Hidrogéis , Lasers , Hidrogéis/química , Animais , Técnicas Biossensoriais/instrumentação , Ratos , Polímeros/química , Desenho de Equipamento , Poliestirenos/química , Tiofenos
2.
Nat Mater ; 23(6): 834-843, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38532072

RESUMO

Liquid crystal elastomers hold promise in various fields due to their reversible transition of mechanical and optical properties across distinct phases. However, the lack of local phase patterning techniques and irreversible phase programming has hindered their broad implementation. Here we introduce laser-induced dynamic crosslinking, which leverages the precision and control offered by laser technology to achieve high-resolution multilevel patterning and transmittance modulation. Incorporation of allyl sulfide groups enables adaptive liquid crystal elastomers that can be reconfigured into desired phases or complex patterns. Laser-induced dynamic crosslinking is compatible with existing processing methods and allows the generation of thermo- and strain-responsive patterns that include isotropic, polydomain and monodomain phases within a single liquid crystal elastomer film. We show temporary information encryption at body temperature, expanding the functionality of liquid crystal elastomer devices in wearable applications.

3.
ACS Nano ; 17(21): 21443-21454, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37857269

RESUMO

Photolithography is a well-established fabrication method for realizing multilayer electronic circuits. However, it is challenging to adopt photolithography to fabricate intrinsically stretchable multilayer electronic circuits fully composed of an elastomeric matrix, due to the opacity of thick stretchable nanocomposite conductors. Here, we present photothermal lithography that can pattern elastomeric conductors and via holes using pulsed lasers. The photothermal-patterned stretchable nanocomposite conductor exhibits 3 times higher conductivity (5940 S cm-1) and 5 orders of magnitude lower resistance change (R/R0 = 40) under a 30% strained 5000th cyclic stretch, compared to those of a screen-printed conductor, based on the percolation network formed by spatial heating of the laser. In addition, a 50 µm sized stretchable via holes can be patterned on the passivation without material ablation and electrical degradation of the bottom conductor. By repeatedly patterning the conductor and via holes, highly conductive and durable multilayer circuits can be stacked with layer-by-layer material integration. Finally, a stretchable wireless pressure sensor and passive matrix LED array are demonstrated, thus showing the potential for a stretchable multilayer electronic circuit with durability, high density, and multifunctionality.

4.
Chem Rev ; 123(16): 9982-10078, 2023 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-37542724

RESUMO

Recent advancements in wearable electronics offer seamless integration with the human body for extracting various biophysical and biochemical information for real-time health monitoring, clinical diagnostics, and augmented reality. Enormous efforts have been dedicated to imparting stretchability/flexibility and softness to electronic devices through materials science and structural modifications that enable stable and comfortable integration of these devices with the curvilinear and soft human body. However, the optical properties of these devices are still in the early stages of consideration. By incorporating transparency, visual information from interfacing biological systems can be preserved and utilized for comprehensive clinical diagnosis with image analysis techniques. Additionally, transparency provides optical imperceptibility, alleviating reluctance to wear the device on exposed skin. This review discusses the recent advancement of transparent wearable electronics in a comprehensive way that includes materials, processing, devices, and applications. Materials for transparent wearable electronics are discussed regarding their characteristics, synthesis, and engineering strategies for property enhancements. We also examine bridging techniques for stable integration with the soft human body. Building blocks for wearable electronic systems, including sensors, energy devices, actuators, and displays, are discussed with their mechanisms and performances. Lastly, we summarize the potential applications and conclude with the remaining challenges and prospects.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Eletrônica
5.
Nat Mater ; 21(9): 997-998, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36002720

Assuntos
Cor
6.
Sci Adv ; 8(23): eabo3209, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35675404

RESUMO

The patterning of poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) hydrogels with excellent electrical property and spatial resolution is a challenge for bioelectronic applications. However, most PEDOT:PSS hydrogels are fabricated by conventional manufacturing processes such as photolithography, inkjet printing, and screen printing with complex fabrication steps or low spatial resolution. Moreover, the additives used for fabricating PEDOT:PSS hydrogels are mostly cytotoxic, thus requiring days of detoxification. Here, we developed a previously unexplored ultrafast and biocompatible digital patterning process for PEDOT:PSS hydrogel via phase separation induced by a laser. We enhanced the electrical properties and aqueous stability of PEDOT:PSS by selective laser scanning, which allowed the transformation of PEDOT:PSS into water-stable hydrogels. PEDOT:PSS hydrogels showed high electrical conductivity of 670 S/cm with 6-µm resolution in water. Furthermore, electrochemical properties were maintained even after 6 months in a physiological environment. We further demonstrated stable neural signal recording and stimulation with hydrogel electrodes fabricated by laser.

7.
Yonsei Med J ; 52(2): 358-61, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21319359

RESUMO

Spontaneous retroperitoneal hemorrhage is one of the most serious and often lethal complications of anticoagulation therapy. The clinical symptoms vary from femoral neuropathy to abdominal compartment syndrome or fatal hypovolemic shock. Of these symptoms, abdominal compartment syndrome is the most serious of all, because it leads to anuria, worsening of renal failure, a decrease in cardiac output, respiratory failure, and intestinal ischemia. We report a case of a spontaneous retroperitoneal hemorrhage in a 48-year-old female who had been receiving warfarin and aspirin for her artificial aortic valve. She presented with a sudden onset of lower abdominal pain, dizziness and a palpable abdominal mass after prolonged straining to defecate. Computed tomography demonstrated a huge retroperitoneal hematoma and active bleeding from the right internal iliac artery. After achieving successful bleeding control with transcatheter arterial embolization, surgical decompression of the hematoma was performed for management of the femoral neuropathy and the abdominal compartment syndrome. She recovered without any complications. We suggest that initial hemostasis by transcatheter arterial embolization followed by surgical decompression of hematoma is a safe, effective treatment method for a spontaneous retroperitoneal hemorrhage complicated with intractable pain, femoral neuropathy, or abdominal compartment syndrome.


Assuntos
Anticoagulantes/efeitos adversos , Síndromes Compartimentais/etiologia , Hemorragia Gastrointestinal/congênito , Abdome , Feminino , Hemorragia Gastrointestinal/induzido quimicamente , Hematoma/etiologia , Hematoma/cirurgia , Humanos , Artéria Ilíaca/diagnóstico por imagem , Artéria Ilíaca/patologia , Pessoa de Meia-Idade , Tomografia Computadorizada por Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...