Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Korean J Neurotrauma ; 15(2): 192-198, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31720276

RESUMO

Vertebral artery injuries associated with C1 lateral mass screw insertion rarely occur during C1-2 fusion. The posterior inferior cerebellar artery (PICA) is uncommonly located at the C1 lateral mass insertion position. A 71-year-old woman with atlanto-axial subluxation and cord compression underwent C1-2 fusion. Sixth nerve palsy and diplopia were detected postoperatively, and decreased consciousness occurred on postoperative day 4. Brain magnetic resonance image (MRI) and computed tomography (CT) revealed PICA infarction. In the preoperative CT angiography, the PICA originated between the C1 and C2 level. In the postoperative CT scan, the PICA was not visible. The patient was treated conservatively for two weeks and recovered. PICA originating between the C1 and C2 level comprises 1.1-1.3% of cases. Therefore, vertebral artery anomalies should be evaluated prior to C1-2 fusion to prevent vessel injuries.

2.
Ultramicroscopy ; 141: 56-62, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24727200

RESUMO

Quartz tuning forks (QTFs) have been extensively employed in scanning probe microscopy. For quantitative measurement of the interaction in nanoscale using QTF as a force sensor, we first measured the effective stiffness of qPlus sensors as well as QTFs and then compared the results with the cantilever beam theory that has been widely used to estimate the stiffness. Comparing with the stiffness and the resonance frequency in our measurement, we found that those calculated based on the beam theory are considerably overestimated. For consistent analysis of experimental and theoretical results, we present the formula to calculate the stiffness of qPlus sensor or QTF, based on the resonance frequency. We also demonstrated that the effective stiffness of QTF is twice that of qPlus sensor, which agrees with the recently suggested model. Our study demonstrates the use of QTF for quantitative measurement of interaction force at the nanoscale in scanning probe microscopy.

3.
J Phys Chem Lett ; 5(4): 737-42, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-26270845

RESUMO

The ubiquitous capillary water bridge in nature plays an important role in interfacial phenomena under ambient conditions such as adhesion and friction. We present experimental measurements of the mechanical properties of the nanometric water column by using noncontact atomic force microscopy. We observe the universal behaviors that the relaxation time (RT) associated with the meniscus increases with its elongation and ruptures at the same value of RT, independent of the meniscus volume. In particular, the enhancement of RT between formation and rupture of the meniscus is indicative of the increased solid-like response, similar to that observed in nanoconfined water layers. Our results that the longer water column is more solid-like and less stable suggest (i) water at the vapor/liquid interface is more solid-like than that inside the meniscus and (ii) the associated smaller mobility of the interfacial water molecules is responsible for the structural stability of the water meniscus.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...