Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 8(3): eabl6406, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061536

RESUMO

Layer-release techniques for producing freestanding III-V epitaxial layers have been actively developed for heterointegration of single-crystalline compound semiconductors with Si platforms. However, for the release of target epitaxial layers from III-V heterostructures, it is required to embed a mechanically or chemically weak sacrificial buffer beneath the target layers. This requirement severely limits the scope of processable materials and their epi-structures and makes the growth and layer-release process complicated. Here, we report that epitaxial layers in commonly used III-V heterostructures can be precisely released with an atomic-scale surface flatness via a buffer-free separation technique. This result shows that heteroepitaxial interfaces of a normal lattice-matched III-V heterostructure can be mechanically separated without a sacrificial buffer and the target interface for separation can be selectively determined by adjusting process conditions. This technique of selective release of epitaxial layers in III-V heterostructures will provide high fabrication flexibility in compound semiconductor technology.

2.
Sensors (Basel) ; 20(17)2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32824939

RESUMO

Graphene-metal contact is crucial to fabricate high-performance graphene photodetectors since the external quantum efficiency (EQE) of the photodetector depends on the contact properties, and the influence of the contact properties is particularly dominant in short channel devices for high-speed applications. Moreover, junction properties between the channel graphene and graphene near the contact are also important to analyze the photoresponse because the built-in electric field in the junction determines the EQE of the photodetector. In this study, we investigated a relation between the photoresponse and the built-in electric field induced from the doping level difference in the junction between the channel graphene and graphene near the contact. The photoresponse could be enhanced with a high junction barrier height that is tuned by the doping level difference. In addition, we observed that the improved electrical characteristics of channel graphene do not guarantee the enhancement of the photoresponse characteristics of graphene photodetectors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA