Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(25): e2313344, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38380843

RESUMO

Due to emerging demands in soft electronics, there is an increasing need for material architectures that support robust interfacing between soft substrates, stretchable electrical interconnects, and embedded rigid microelectronics chips. Though researchers have adopted rigid-island structures to solve the issue, this approach merely shifts stress concentrations from chip-conductor interfaces to rigid-island-soft region interfaces in the substrate. Here, a gradient stiffness-programmed circuit board (GS-PCB) that possesses high stretchability and stability with surface mounted chips is introduced. The board comprises a stiffness-programmed hydrogel substrate and a laser-patterned liquid metal conductor. The hydrogel simultaneously obtains a large stiffness disparity and robust interfaces between rigid-islands and soft regions. These seemingly contradictory conditions are accomplished by adopting a gradient stiffness structure at the interfaces, enabled by combining polymers with different interaction energies and a supercooled sodium acetate solution. By integrating the gel with laser-patterned liquid metal with exceptional properties, GS-PCB exhibits higher electromechanical stability than other rigid-island research. To highlight the practicality of this approach, a finger-sensor device that successfully distinguishes objects by direct physical contact is fabricated, demonstrating its stability under various mechanical disturbances.

2.
Adv Healthc Mater ; 12(17): e2202430, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36706458

RESUMO

Liquid metal embedded elastomers (LMEEs) are highly stretchable composites comprising microscopic droplets of eutectic gallium-indium (EGaIn) liquid metal embedded in a soft rubber matrix. They have a unique combination of mechanical, electrical, and thermal properties that make them attractive for potential applications in flexible electronics, thermal management, wearable computing, and soft robotics. However, the use of LMEEs in direct contact with human tissue or organs requires an understanding of their biocompatibility and cell cytotoxicity. In this study, the cytotoxicity of C2C12 cells in contact with LMEE composites composed of EGaIn droplets embedded with a polydimethylsiloxane (PDMS) matrix is investigated. In particular, the influence of EGaIn volume ratio and shear mixing time during synthesis on cell proliferation and viability is examined. The special case of electrically-conductive LMEE composites in which a percolating network of EGaIn droplets is created through "mechanical sintering" is also examined. This study in C2C12 cytotoxicity represents a first step in determining whether LMEE is safe for use in implantable biomedical devices and biohybrid systems.


Assuntos
Elastômeros , Índio , Humanos , Elastômeros/toxicidade , Borracha , Proliferação de Células , Condutividade Elétrica
3.
ACS Appl Mater Interfaces ; 14(49): 55028-55038, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458663

RESUMO

Liquid metal embedded elastomers (LMEEs) are composed of a soft polymer matrix embedded with droplets of metal alloys that are liquid at room temperature. These soft matter composites exhibit exceptional combinations of elastic, electrical, and thermal properties that make them uniquely suited for applications in flexible electronics, soft robotics, and thermal management. However, the fabrication of LMEE structures has primarily relied on rudimentary techniques that limit patterning to simple planar geometries. Here, we introduce an approach for direct ink write (DIW) printing of a printable LMEE ink to create three-dimensional shapes with various designs. We use eutectic gallium-indium (EGaIn) as the liquid metal, which reacts with oxygen to form an electrically insulating oxide skin that acts as a surfactant and stabilizes the droplets for 3D printing. To rupture the oxide skin and achieve electrical conductivity, we encase the LMEE in a viscoelastic polymer and apply acoustic shock. For printed composites with a 80% LM volume fraction, this activation method allows for a volumetric electrical conductivity of 5 × 104 S cm-1 (80% LM volume)─significantly higher than what had been previously reported with mechanically sintered EGaIn-silicone composites. Moreover, we demonstrate the ability to print 3D LMEE interfaces that provide enhanced charge transfer for a triboelectric nanogenerator (TENG) and improved thermal conductivity within a thermoelectric device (TED). The 3D printed LMEE can be integrated with a highly soft TED that is wearable and capable of providing cooling/heating to the skin through electrical stimulation.

4.
Small ; 18(37): e2202841, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35901286

RESUMO

Owing to its low mechanical compliance, liquid metal is intrinsically suitable for stretchable electronics and future wearable devices. However, its invariable strain-resistance behavior according to the strain-induced geometrical deformation and the difficulty of circuit patterning limit the extensive use of liquid metal, especially for strain-insensitive wiring purposes. To overcome these limitations, herein, novel liquid-metal-based electrodes of fragmented eutectic gallium-indium alloy (EGaIn) and Ag nanowire (NW) backbone of which their entanglement is controlled by the laser-induced photothermal reaction to enable immediate and direct patterning of the stretchable electrode with spatially programmed strain-resistance characteristics are developed. The coexistence of fragmented EGaIn and AgNW backbone, that is, a biphasic metallic composite (BMC), primarily supports the uniform and durable formation of target layers on stretchable substrates. The laser-induced photothermal reaction not only promotes the adhesion between the BMC layer and substrates but also alters the structure of laser-irradiated BMC. By controlling the degree of entanglement between fragmented EGaIn and AgNW, the initial conductivity and local gauge factor are regulated and the electrode becomes effectively insensitive to applied strain. As the configuration developed in this study is compatible with both regimes of electrodes, it can open new routes for the rapid creation of complex stretchable circuitry through a single process.

5.
Nanomaterials (Basel) ; 12(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35055239

RESUMO

Recently, several studies have been conducted on wearable biosensors. Despite being skin-adhesive and mountable diagnostic devices, flexible biosensor patches cannot truly be considered wearable biosensors if they need to be connected to external instruments/processors to provide meaningful data/readings. A realistic and usable wearable biosensor should be self-contained, with a fully integrated device framework carefully designed and configured to provide reliable and intelligent diagnostics. There are several major challenges to achieving continuous sweat monitoring in real time for the systematic and effective management of type II diabetes (e.g., prevention, screening, monitoring, and treatment) through wearable sweat glucose biosensors. Consequently, further in-depth research regarding the exact interrelationship between active or passive sweat glucose and blood glucose is required to assess the applicability of wearable glucose biosensors in functional health monitoring. This review provides some useful insights that can enable effective critical studies of these unresolved issues. In this review, we first classify wearable glucose biosensors based on their signal transduction, their respective challenges, and the advanced strategies required to overcome them. Subsequently, the challenges and limitations of enzymatic and non-enzymatic wearable glucose biosensors are discussed and compared. Ten basic criteria to be considered and fulfilled in the development of a suitable, workable, and wearable sweat-based glucose biosensor are listed, based on scientific reports from the last five years. We conclude with our outlook for the controllable, well-defined, and non-invasive monitoring of epidermal glucose for maximum diagnostic potential in the effective management of type II diabetes.

6.
Sci Rep ; 12(1): 1572, 2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35091581

RESUMO

In this study, we introduce a flexible metal grid transparent electrode fabricated using a lift-off process. This transparent electrode consisting of metal thin film with punched-like pattern by hole array was fabricated with 8 um separations. The separation of inkjet-printed etching resistant ink droplets was controlled in order to investigate the relationship between its electrical and optical properties of the electrodes. The aluminum areal density was defined to predict the electrical and optical properties of different arrays. A high and uniform transmittance spectrum appears to extend broadly into the UV region. The figure of merit of the transparent electrode was investigated in order to determine its performance as a transparent electrode. Moreover, there was no significant change in the resistance after 7000 bending cycles, indicating that the array conductor had superior stability. We also demonstrate transparent touch screen panels fabricated using the transparent electrode.

7.
Nat Commun ; 12(1): 4658, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376680

RESUMO

Development of an artificial camouflage at a complete device level remains a vastly challenging task, especially under the aim of achieving more advanced and natural camouflage characteristics via high-resolution camouflage patterns. Our strategy is to integrate a thermochromic liquid crystal layer with the vertically stacked, patterned silver nanowire heaters in a multilayer structure to overcome the limitations of the conventional lateral pixelated scheme through the superposition of the heater-induced temperature profiles. At the same time, the weaknesses of thermochromic camouflage schemes are resolved in this study by utilizing the temperature-dependent resistance of the silver nanowire network as the process variable of the active control system. Combined with the active control system and sensing units, the complete device chameleon model successfully retrieves the local background color and matches its surface color instantaneously with natural transition characteristics to be a competent option for a next-generation artificial camouflage.

8.
Adv Sci (Weinh) ; 8(20): e2102536, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34449132

RESUMO

Evolution has decided to gift an articular structure to vertebrates, but not to invertebrates, owing to their distinct survival strategies. An articular structure permits kinematic motion in creatures. However, it is inappropriate for creatures whose survival strategy depends on the high deformability of their body. Accordingly, a material in which the presence of the articular structure can be altered, allowing the use of two contradictory strategies, will be advantageous in diverse dynamic applications. Herein, spatial micro-water molecule manipulation, termed engineering on variable occupation of water (EVO), that is used to realize a material with dual mechanical modes that exhibit extreme differences in stiffness is introduced. A transparent and homogeneous soft material (110 kPa) reversibly converts to an opaque material embodying a mechanical gradient (ranging from 1 GPa to 1 MPa) by on-demand switching. Intensive theoretical analysis of EVO yields the design of spatial transformation scheme. The EVO gel accomplishes kinematic motion planning and shows great promise for multimodal kinematics. This approach paves the way for the development and application of smart functional materials.


Assuntos
Evolução Biológica , Amplitude de Movimento Articular/fisiologia , Vertebrados/fisiologia , Água/metabolismo , Animais , Fenômenos Biomecânicos , Movimento (Física)
9.
iScience ; 24(7): 102698, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34195573

RESUMO

Soft wearable electronics are rapidly developing through exploration of new materials, fabrication approaches, and design concepts. Although there have been many efforts for decades, a resurgence of interest in liquid metals (LMs) for sensing and wiring functional properties of materials in soft wearable electronics has brought great advances in wearable electronics and materials. Various forms of LMs enable many routes to fabricate flexible and stretchable sensors, circuits, and functional wearables with many desirable properties. This review article presents a systematic overview of recent progresses in LM-enabled wearable electronics that have been achieved through material innovations and the discovery of new fabrication approaches and design architectures. We also present applications of wearable LM technologies for physiological sensing, activity tracking, and energy harvesting. Finally, we discuss a perspective on future opportunities and challenges for wearable LM electronics as this field continues to grow.

10.
Adv Mater ; 33(19): e2002397, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33089569

RESUMO

The advent of soft robotics has led to great advancements in robots, wearables, and even manufacturing processes by employing entirely soft-bodied systems that interact safely with any random surfaces while providing great mechanical compliance. Moreover, recent developments in soft robotics involve advances in transparent soft actuators and sensors that have made it possible to construct robots that can function in a visually and mechanically unobstructed manner, assisting the operations of robots and creating more applications in various fields. In this aspect, imperceptible soft robotics that mainly consist of optically transparent imperceptible hardware components is expected to constitute a new research focus in the forthcoming era of soft robotics. Here, the recent progress regarding extended imperceptible soft robotics is provided, including imperceptible transparent soft robotics (transparent soft actuators/sensors) and imperceptible nontransparent camouflage skins. Their principles, materials selections, and working mechanisms are discussed so that key challenges and perspectives in imperceptible soft robotic systems can be explored.

11.
Nat Mater ; 20(1): 100-107, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32807919

RESUMO

The patterning of polydimethylsiloxane (PDMS) into complex two-dimensional (2D) or 3D shapes is a crucial step for diverse applications based on soft lithography. Nevertheless, mould replication that incorporates time-consuming and costly photolithography processes still remains the dominant technology in the field. Here we developed monolithic quasi-3D digital patterning of PDMS using laser pyrolysis. In contrast with conventional burning or laser ablation of transparent PDMS, which yields poor surface properties, our successive laser pyrolysis technique converts PDMS into easily removable silicon carbide via consecutive photothermal pyrolysis guided by a continuous-wave laser. We obtained high-quality 2D or 3D PDMS structures with complex patterning starting from a PDMS monolith in a remarkably low prototyping time (less than one hour). Moreover, we developed distinct microfluidic devices with elaborated channel architectures and a customizable organ-on-a-chip device using this approach, which showcases the potential of the successive laser pyrolysis technique for the fabrication of devices for several technological applications.


Assuntos
Dimetilpolisiloxanos/química , Dispositivos Lab-On-A-Chip , Lasers , Nylons/química , Pirólise
12.
Nat Commun ; 11(1): 2149, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32358525

RESUMO

State monitoring of the complex system needs a large number of sensors. Especially, studies in soft electronics aim to attain complete measurement of the body, mapping various stimulations like temperature, electrophysiological signals, and mechanical strains. However, conventional approach requires many sensor networks that cover the entire curvilinear surfaces of the target area. We introduce a new measuring system, a novel electronic skin integrated with a deep neural network that captures dynamic motions from a distance without creating a sensor network. The device detects minute deformations from the unique laser-induced crack structures. A single skin sensor decodes the complex motion of five finger motions in real-time, and the rapid situation learning (RSL) ensures stable operation regardless of its position on the wrist. The sensor is also capable of extracting gait motions from pelvis. This technology is expected to provide a turning point in health-monitoring, motion tracking, and soft robotics.


Assuntos
Técnicas Biossensoriais/métodos , Nanopartículas Metálicas/química , Movimento (Física) , Prata/química , Dispositivos Eletrônicos Vestíveis , Humanos , Temperatura , Punho
13.
Nano Lett ; 19(9): 6087-6096, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31411037

RESUMO

Recent research progress of relieving discomfort between electronics and human body involves serpentine designs, ultrathin films, and extraordinary properties of nanomaterials. However, these strategies addressed thus far each face own limitation for achieving desired form of electronic-skin applications. Evenly matched mechanical properties anywhere on the body and imperceptibility of electronics are two essentially required characteristics for future electronic-skin (E-skin) devices. Yet accomplishing these two main properties simultaneously is still very challenging. Hence, we propose a novel fabrication method to introduce kirigami approach to pattern a highly conductive and transparent electrode into diverse shapes of stretchable electronics with multivariable configurability for E-skin applications. These kirigami engineered patterns impart tunable elasticity to the electrodes, which can be designed to intentionally limit strain or grant ultrastretchability depending on applications over the range of 0 to over 400% tensile strain with strain-invariant electrical property and show excellent strain reversibility even after 10 000 cycles stretching while exhibiting high optical transparency (>80%). The versatility of this work is demonstrated by ultrastretchable transparent kirigami heater for personal thermal management and conformal transparent kirigami electrophysiology sensor for continuous health monitoring of human body conditions. Finally, by integrating E-skin sensors with quadrotor drones, we have successfully demonstrated human-machine-interface using our stretchable transparent kirigami electrodes.


Assuntos
Nanoestruturas/química , Nanofios/química , Dispositivos Eletrônicos Vestíveis , Elasticidade , Condutividade Elétrica , Humanos
14.
Soft Robot ; 6(6): 760-767, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31343386

RESUMO

Transparency in electronics can provide extra functionality and esthetic impression. Transparency plays an important role in accurate soft robot control because one can directly observe target surface condition that is usually blocked by a robot's body. Nowadays, demand for soft actuators has been rapidly increasing because soft robots have attracted much attention recently. However, conventional soft actuators are usually nontransparent with simple isotropic bending, limited performance, and limited functionality. To overcome such limitations of current soft robots, we developed a novel soft shape morphing thin film actuator with new functionalities such as high transparency and unique directional responses to allow complex behavior by integrating a transparent metal nanowire heater. A figure of merit was developed to evaluate the performance and derive an optimum design configuration for the transparent actuator with enhanced performance. As a proof of concept, various transparent soft robots such as transparent gripper, Venus flytrap, and transparent walking robot were demonstrated. Such transparent directional shape morphing actuator is expected to open new application fields and functionalities overcoming limitations of current soft robots.

15.
Nanoscale ; 10(36): 17410, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30198036

RESUMO

Correction for 'A three-dimensional metal grid mesh as a practical alternative to ITO' by Sungwoo Jang et al., Nanoscale, 2016, 8, 14257-14263.

16.
ACS Appl Mater Interfaces ; 9(51): 44609-44616, 2017 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-29188706

RESUMO

Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.


Assuntos
Nanofios , Fenômenos Eletromagnéticos , Movimento (Física) , Prata , Dispositivos Eletrônicos Vestíveis
17.
ACS Appl Mater Interfaces ; 9(46): 40905-40913, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29099584

RESUMO

This work presents a new template-assisted fabrication method to obtain stretchable metal grids for high-performance stretchable transparent conducting electrodes (TCEs). Readily accessible metal woven mesh (MWM) is used as a template to make the fabrication process simple, cost-effective, reproducible, and potentially scalable by combining it with silver nanowire (AgNW) coating and elastomer filling processes. Stretchable TCEs are made with the AgNW-coated MWM and show remarkable optoelectronic performance with a sheet resistance of ∼3.2 Ω/sq and optical transmittance of >80%, large maximum stretchability of 40%, and electrical and mechanical robustness even under repeated stretching and bending deformations (1000 cycles). The device is demonstrated in a highly flexible touch screen panel that can operate well even in a bent state.

18.
Nano Lett ; 17(7): 4339-4346, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28609619

RESUMO

Air quality has become a major public health issue in Asia including China, Korea, and India. Particulate matters are the major concern in air quality. We present the first environmental application demonstration of Ag nanowire percolation network for a novel, electrical type transparent, reusable, and active PM2.5 air filter although the Ag nanowire percolation network has been studied as a very promising transparent conductor in optoelectronics. Compared with previous particulate matter air filter study using relatively weaker short-range intermolecular force in polar polymeric nanofiber, Ag nanowire percolation network filters use stronger long-range electrostatic force to capture PM2.5, and they are highly efficient (>99.99%), transparent, working on an active mode, low power consumption, antibacterial, and reusable after simple washing. The proposed new particulate matter filter can be applied for a highly efficient, reusable, active and energy efficient filter for wearable electronics application.

19.
Nanoscale ; 9(5): 1978-1985, 2017 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-28105474

RESUMO

Although solution processed metal nanowire (NW) percolation networks are a strong candidate to replace commercial indium tin oxide, their performance is limited in thin film device applications due to reduced effective electrical areas arising from the dimple structure and percolative voids that single size metal NW percolation networks inevitably possess. Here, we present a transparent electrode based on a dual-scale silver nanowire (AgNW) percolation network embedded in a flexible substrate to demonstrate a significant enhancement in the effective electrical area by filling the large percolative voids present in a long/thick AgNW network with short/thin AgNWs. As a proof of concept, the performance enhancement of a flexible phosphorescent OLED is demonstrated with the dual-scale AgNW percolation network compared to the previous mono-scale AgNWs. Moreover, we report that mechanical and oxidative robustness, which are critical for flexible OLEDs, are greatly increased by embedding the dual-scale AgNW network in a resin layer.

20.
Sci Transl Med ; 8(366): 366ra165, 2016 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-27881826

RESUMO

Capabilities in health monitoring enabled by capture and quantitative chemical analysis of sweat could complement, or potentially obviate the need for, approaches based on sporadic assessment of blood samples. Established sweat monitoring technologies use simple fabric swatches and are limited to basic analysis in controlled laboratory or hospital settings. We present a collection of materials and device designs for soft, flexible, and stretchable microfluidic systems, including embodiments that integrate wireless communication electronics, which can intimately and robustly bond to the surface of the skin without chemical and mechanical irritation. This integration defines access points for a small set of sweat glands such that perspiration spontaneously initiates routing of sweat through a microfluidic network and set of reservoirs. Embedded chemical analyses respond in colorimetric fashion to markers such as chloride and hydronium ions, glucose, and lactate. Wireless interfaces to digital image capture hardware serve as a means for quantitation. Human studies demonstrated the functionality of this microfluidic device during fitness cycling in a controlled environment and during long-distance bicycle racing in arid, outdoor conditions. The results include quantitative values for sweat rate, total sweat loss, pH, and concentration of chloride and lactate.


Assuntos
Colorimetria/métodos , Microfluídica/instrumentação , Suor/química , Dispositivos Eletrônicos Vestíveis , Adolescente , Adulto , Idoso , Técnicas Biossensoriais , Criança , Cloretos/química , Desenho de Equipamento , Feminino , Glucose/química , Humanos , Concentração de Íons de Hidrogênio , Processamento de Imagem Assistida por Computador , Dispositivos Lab-On-A-Chip , Ácido Láctico/química , Masculino , Pessoa de Meia-Idade , Smartphone , Interface Usuário-Computador , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...