Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38562719

RESUMO

Pioneer transcription factors (TFs) exhibit a specialized ability to bind to and open closed chromatin, facilitating engagement by other regulatory factors involved in gene activation or repression. Chemical probes are lacking for pioneer TFs, which has hindered their mechanistic investigation in cells. Here, we report the chemical proteomic discovery of electrophilic small molecules that stereoselectively and site-specifically bind the pioneer TF, FOXA1, at a cysteine (C258) within the forkhead DNA-binding domain. We show that these covalent ligands react with FOXA1 in a DNA-dependent manner and rapidly remodel its pioneer activity in prostate cancer cells reflected in redistribution of FOXA1 binding across the genome and directionally correlated changes in chromatin accessibility. Motif analysis supports a mechanism where the covalent ligands relax the canonical DNA binding preference of FOXA1 by strengthening interactions with suboptimal ancillary sequences in predicted proximity to C258. Our findings reveal a striking plasticity underpinning the pioneering function of FOXA1 that can be controlled by small molecules.

2.
bioRxiv ; 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38464067

RESUMO

Chemical proteomics enables the global assessment of small molecule-protein interactions in native biological systems and has emerged as a versatile approach for ligand discovery. The range of small molecules explored by chemical proteomics has, however, been limited. Here, we describe a diversity-oriented synthesis (DOS)-inspired library of stereochemically-defined compounds bearing diazirine and alkyne units for UV light-induced covalent modification and click chemistry enrichment of interacting proteins, respectively. We find that these 'photo-stereoprobes' interact in a stereoselective manner with hundreds of proteins from various structural and functional classes in human cells and demonstrate that these interactions can form the basis for high-throughput screening-compatible nanoBRET assays. Integrated phenotypic analysis and chemical proteomics identified photo-stereoprobes that modulate autophagy by engaging the mitochondrial serine protease CLPP. Our findings show the utility of photo-stereoprobes for expanding the ligandable proteome, furnishing target engagement assays, and discovering and characterizing bioactive small molecules by cell-based screening.

3.
bioRxiv ; 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38293178

RESUMO

More than half of the ~20,000 protein-encoding human genes have at least one paralog. Chemical proteomics has uncovered many electrophile-sensitive cysteines that are exclusive to a subset of paralogous proteins. Here, we explore whether such covalent compound-cysteine interactions can be used to discover ligandable pockets in paralogs that lack the cysteine. Leveraging the covalent ligandability of C109 in the cyclin CCNE2, we mutated the corresponding residue in paralog CCNE1 to cysteine (N112C) and found through activity-based protein profiling (ABPP) that this mutant reacts stereoselectively and site-specifically with tryptoline acrylamides. We then converted the tryptoline acrylamide-N112C-CCNE1 interaction into a NanoBRET-ABPP assay capable of identifying compounds that reversibly inhibit both N112C- and WT-CCNE1:CDK2 complexes. X-ray crystallography revealed a cryptic allosteric pocket at the CCNE1:CDK2 interface adjacent to N112 that binds the reversible inhibitors. Our findings thus provide a roadmap for leveraging electrophile-cysteine interactions to extend the ligandability of the proteome beyond covalent chemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA