Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Res Sq ; 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38585715

RESUMO

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity and response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse brain ex vivo and in vivo. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. Lastly, we demonstrated acute opioid-induced generation of H2O2 signal in vivo which highlights redox-based mechanisms of GPCR regulation. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for understanding diseases associated with oxidative stress, such as cancer, neurodegenerative, and cardiovascular diseases.

2.
bioRxiv ; 2024 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-38352381

RESUMO

Hydrogen Peroxide (H2O2) is a central oxidant in redox biology due to its pleiotropic role in physiology and pathology. However, real-time monitoring of H2O2 in living cells and tissues remains a challenge. We address this gap with the development of an optogenetic hydRogen perOxide Sensor (oROS), leveraging the bacterial peroxide binding domain OxyR. Previously engineered OxyR-based fluorescent peroxide sensors lack the necessary sensitivity or response speed for effective real-time monitoring. By structurally redesigning the fusion of Escherichia coli (E. coli) ecOxyR with a circularly permutated green fluorescent protein (cpGFP), we created a novel, green-fluorescent peroxide sensor oROS-G. oROS-G exhibits high sensitivity and fast on-and-off kinetics, ideal for monitoring intracellular H2O2 dynamics. We successfully tracked real-time transient and steady-state H2O2 levels in diverse biological systems, including human stem cell-derived neurons and cardiomyocytes, primary neurons and astrocytes, and mouse neurons and astrocytes in ex vivo brain slices. These applications demonstrate oROS's capabilities to monitor H2O2 as a secondary response to pharmacologically induced oxidative stress, G-protein coupled receptor (GPCR)-induced cell signaling, and when adapting to varying metabolic stress. We showcased the increased oxidative stress in astrocytes via Aß-putriscine-MAOB axis, highlighting the sensor's relevance in validating neurodegenerative disease models. oROS is a versatile tool, offering a window into the dynamic landscape of H2O2 signaling. This advancement paves the way for a deeper understanding of redox physiology, with significant implications for diseases associated with oxidative stress, such as cancer, neurodegenerative disorders, and cardiovascular diseases.

4.
Nat Metab ; 5(9): 1506-1525, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37653043

RESUMO

The lateral hypothalamic area (LHA) regulates food intake and energy balance. Although LHA neurons innervate adipose tissues, the identity of neurons that regulate fat is undefined. Here we show that GABRA5-positive neurons in LHA (GABRA5LHA) polysynaptically project to brown and white adipose tissues in the periphery. GABRA5LHA are a distinct subpopulation of GABAergic neurons and show decreased pacemaker firing in diet-induced obesity mouse models in males. Chemogenetic inhibition of GABRA5LHA suppresses fat thermogenesis and increases weight gain, whereas gene silencing of GABRA5 in LHA decreases weight gain. In the diet-induced obesity mouse model, GABRA5LHA are tonically inhibited by nearby reactive astrocytes releasing GABA, which is synthesized by monoamine oxidase B (Maob). Gene silencing of astrocytic Maob in LHA facilitates fat thermogenesis and reduces weight gain significantly without affecting food intake, which is recapitulated by administration of a Maob inhibitor, KDS2010. We propose that firing of GABRA5LHA suppresses fat accumulation and selective inhibition of astrocytic GABA is a molecular target for treating obesity.


Assuntos
Astrócitos , Obesidade , Masculino , Animais , Camundongos , Aumento de Peso , Neurônios , Modelos Animais de Doenças , Monoaminoxidase , Ácido gama-Aminobutírico
5.
Nat Commun ; 14(1): 3547, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37321992

RESUMO

Autism spectrum disorders (ASD) represent neurodevelopmental disorders characterized by social deficits, repetitive behaviors, and various comorbidities, including epilepsy. ANK2, which encodes a neuronal scaffolding protein, is frequently mutated in ASD, but its in vivo functions and disease-related mechanisms are largely unknown. Here, we report that mice with Ank2 knockout restricted to cortical and hippocampal excitatory neurons (Ank2-cKO mice) show ASD-related behavioral abnormalities and juvenile seizure-related death. Ank2-cKO cortical neurons show abnormally increased excitability and firing rate. These changes accompanied decreases in the total level and function of the Kv7.2/KCNQ2 and Kv7.3/KCNQ3 potassium channels and the density of these channels in the enlengthened axon initial segment. Importantly, the Kv7 agonist, retigabine, rescued neuronal excitability, juvenile seizure-related death, and hyperactivity in Ank2-cKO mice. These results suggest that Ank2 regulates neuronal excitability by regulating the length of and Kv7 density in the AIS and that Kv7 channelopathy is involved in Ank2-related brain dysfunctions.


Assuntos
Epilepsia , Canais de Potássio KCNQ , Animais , Camundongos , Epilepsia/metabolismo , Canais de Potássio KCNQ/genética , Canal de Potássio KCNQ2/genética , Canal de Potássio KCNQ2/metabolismo , Canal de Potássio KCNQ3/metabolismo , Neurônios/metabolismo , Convulsões/genética , Convulsões/metabolismo
6.
Brain ; 146(7): 2957-2974, 2023 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-37062541

RESUMO

Reactive astrogliosis is a hallmark of Alzheimer's disease (AD). However, a clinically validated neuroimaging probe to visualize the reactive astrogliosis is yet to be discovered. Here, we show that PET imaging with 11C-acetate and 18F-fluorodeoxyglucose (18F-FDG) functionally visualizes the reactive astrocyte-mediated neuronal hypometabolism in the brains with neuroinflammation and AD. To investigate the alterations of acetate and glucose metabolism in the diseased brains and their impact on the AD pathology, we adopted multifaceted approaches including microPET imaging, autoradiography, immunohistochemistry, metabolomics, and electrophysiology. Two AD rodent models, APP/PS1 and 5xFAD transgenic mice, one adenovirus-induced rat model of reactive astrogliosis, and post-mortem human brain tissues were used in this study. We further curated a proof-of-concept human study that included 11C-acetate and 18F-FDG PET imaging analyses along with neuropsychological assessments from 11 AD patients and 10 healthy control subjects. We demonstrate that reactive astrocytes excessively absorb acetate through elevated monocarboxylate transporter-1 (MCT1) in rodent models of both reactive astrogliosis and AD. The elevated acetate uptake is associated with reactive astrogliosis and boosts the aberrant astrocytic GABA synthesis when amyloid-ß is present. The excessive astrocytic GABA subsequently suppresses neuronal activity, which could lead to glucose uptake through decreased glucose transporter-3 in the diseased brains. We further demonstrate that 11C-acetate uptake was significantly increased in the entorhinal cortex, hippocampus and temporo-parietal neocortex of the AD patients compared to the healthy controls, while 18F-FDG uptake was significantly reduced in the same regions. Additionally, we discover a strong correlation between the patients' cognitive function and the PET signals of both 11C-acetate and 18F-FDG. We demonstrate the potential value of PET imaging with 11C-acetate and 18F-FDG by visualizing reactive astrogliosis and the associated neuronal glucose hypometablosim for AD patients. Our findings further suggest that the acetate-boosted reactive astrocyte-neuron interaction could contribute to the cognitive decline in AD.


Assuntos
Doença de Alzheimer , Camundongos , Humanos , Ratos , Animais , Doença de Alzheimer/metabolismo , Fluordesoxiglucose F18/metabolismo , Astrócitos/metabolismo , Radioisótopos de Carbono/metabolismo , Gliose/diagnóstico por imagem , Encéfalo/patologia , Tomografia por Emissão de Pósitrons/métodos , Ácido gama-Aminobutírico/metabolismo
7.
Exp Neurobiol ; 32(6): 395-409, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38196135

RESUMO

The µ-opioid receptor (MOR) is a class of opioid receptors characterized by a high affinity for ß-endorphin and morphine. MOR is a G protein-coupled receptor (GPCR) that plays a role in reward and analgesic effects. While expression of MOR has been well established in neurons and microglia, astrocytic MOR expression has been less clear. Recently, we have reported that MOR is expressed in hippocampal astrocytes, and its activation has a critical role in the establishment of conditioned place preference. Despite this critical role, the expression and function of astrocytic MOR from other brain regions are still unknown. Here, we report that MOR is significantly expressed in astrocytes and GABAergic neurons from various brain regions including the hippocampus, nucleus accumbens, periaqueductal gray, amygdala, and arcuate nucleus. Using the MOR-mCherry reporter mice and Imaris analysis, we demonstrate that astrocytic MOR expression exceeded 60% in all tested regions. Also, we observed similar MOR expression of GABAergic neurons as shown in the previous distribution studies and it is noteworthy that MOR expression is particularly in parvalbumin (PV)-positive neurons. Furthermore, consistent with the normal MOR function observed in the MOR-mCherry mouse, our study also demonstrates intact MOR functionality in astrocytes through iGluSnFr-mediated glutamate imaging. Finally, we show the sex-difference in the expression pattern of MOR in PV-positive neurons, but not in the GABAergic neurons and astrocytes. Taken together, our findings highlight a substantial astrocytic MOR presence across various brain regions.

8.
Exp Mol Med ; 54(8): 1188-1200, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35982301

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation and the destruction of joints and systemic organs. RA is commonly accompanied by neuropsychiatric complications, such as cognitive impairment and depression. However, the role of monoamine oxidase (MAO) and its inhibitors in controlling neurotransmitters associated with these complications in RA have not been clearly identified. Here, we report that peripheral and central MAO-B are highly associated with joint inflammation and cognitive impairment in RA, respectively. Ribonucleic acid (RNA) sequencing and protein expression quantification were used to show that MAO-B and related molecules, such as gamma aminobutyric acid (GABA), were elevated in the inflamed synovium of RA patients. In primary cultured fibroblast-like synoviocytes in the RA synovium, MAO-B expression was significantly increased by tumor necrosis factor (TNF)-α-induced autophagy, which produces putrescine, the polyamine substrate for GABA synthesis. We also observed that MAO-B-mediated aberrant astrocytic production of GABA was augmented by interleukin (IL)-1ß and inhibited CA1-hippocampal pyramidal neurons, which are responsible for memory storage, in an animal model of RA. Moreover, a newly developed reversible inhibitor of MAO-B ameliorated joint inflammation by inhibiting cyclooxygenase (Cox)-2. Therefore, MAO-B can be an effective therapeutic target for joint inflammation and cognitive impairment in patients with RA.


Assuntos
Artrite Reumatoide , Disfunção Cognitiva , Animais , Artrite Reumatoide/complicações , Artrite Reumatoide/tratamento farmacológico , Células Cultivadas , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Fibroblastos/metabolismo , Inflamação/metabolismo , Monoaminoxidase/metabolismo , Monoaminoxidase/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Ácido gama-Aminobutírico/metabolismo
9.
Exp Neurobiol ; 30(3): 222-231, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34045369

RESUMO

Parkinson's disease (PD) is the most prevalent neurodegenerative motor disorder. While PD has been attributed to dopaminergic neuronal death in substantia nigra pars compacta (SNpc), accumulating lines of evidence have suggested that reactive astrogliosis is critically involved in PD pathology. These pathological changes are associated with α-synuclein aggregation, which is more prone to be induced by an A53T mutation. Therefore, the overexpression of A53T-mutated α-synuclein (A53T-α-syn) has been utilized as a popular animal model of PD. However, this animal model only shows marginal-to-moderate extents of reactive astrogliosis and astrocytic α-synuclein accumulation, while these phenomena are prominent in human PD brains. Here we show that Adeno-GFAP-GFP virus injection into SNpc causes severe reactive astrogliosis and exacerbates the A53T-α-syn-mediated PD pathology. In particular, we demonstrate that AAV-CMV-A53T-α-syn injection, when combined with Adeno-GFAP-GFP, causes more significant loss of dopaminergic neuronal tyrosine hydroxylase level and gain of astrocytic GFAP and GABA levels. Moreover, the combination of AAV-CMV-A53T-α-syn and Adeno-GFAP-GFP causes an extensive astrocytic α-syn expression, just as in human PD brains. These results are in marked contrast to previous reports that AAV-CMV-A53T-α-syn alone causes α-syn expression mostly in neurons but rarely in astrocytes. Furthermore, the combination causes a severe PD-like motor dysfunction as assessed by rotarod and cylinder tests within three weeks from the virus injection, whereas Adeno-GFAP-GFP alone or AAV-CMV-A53T-α-syn alone does not. Our findings implicate that inducing reactive astrogliosis exacerbates PD-like pathologies and propose the virus combination as an advanced strategy for developing a new animal model of PD.

10.
Exp Mol Med ; 53(5): 956-972, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34035463

RESUMO

An ongoing pandemic of coronavirus disease 2019 (COVID-19) is now the greatest threat to global public health. Herbal medicines and their derived natural products have drawn much attention in the treatment of COVID-19, but the detailed mechanisms by which natural products inhibit SARS-CoV-2 have not been elucidated. Here, we show that platycodin D (PD), a triterpenoid saponin abundant in Platycodon grandiflorum (PG), a dietary and medicinal herb commonly used in East Asia, effectively blocks the two main SARS-CoV-2 infection routes via lysosome- and transmembrane protease serine 2 (TMPRSS2)-driven entry. Mechanistically, PD prevents host entry of SARS-CoV-2 by redistributing membrane cholesterol to prevent membrane fusion, which can be reinstated by treatment with a PD-encapsulating agent. Furthermore, the inhibitory effects of PD are recapitulated by the pharmacological inhibition or gene silencing of NPC1, which is mutated in patients with Niemann-Pick type C (NPC) displaying disrupted membrane cholesterol distribution. Finally, readily available local foods or herbal medicines containing PG root show similar inhibitory effects against SARS-CoV-2 infection. Our study proposes that PD is a potent natural product for preventing or treating COVID-19 and that briefly disrupting the distribution of membrane cholesterol is a potential novel therapeutic strategy for SARS-CoV-2 infection.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , SARS-CoV-2/efeitos dos fármacos , Saponinas/farmacologia , Serina Endopeptidases/metabolismo , Triterpenos/farmacologia , Internalização do Vírus/efeitos dos fármacos , Antivirais/química , COVID-19/metabolismo , Linhagem Celular , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Modelos Moleculares , Platycodon/química , SARS-CoV-2/fisiologia , Saponinas/química , Triterpenos/química
11.
Cell Mol Life Sci ; 78(2): 415-426, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32671427

RESUMO

µ-opioid receptor (MOR) is a class of opioid receptors that is critical for analgesia, reward, and euphoria. MOR is distributed in various brain regions, including the hippocampus, where traditionally, it is believed to be localized mainly at the presynaptic terminals of the GABAergic inhibitory interneurons to exert a strong disinhibitory effect on excitatory pyramidal neurons. However, recent intensive research has uncovered the existence of MOR in hippocampal astrocytes, shedding light on how astrocytic MOR participates in opioid signaling via glia-neuron interaction in the hippocampus. Activation of astrocytic MOR has shown to cause glutamate release from hippocampal astrocytes and increase the excitability of presynaptic axon fibers to enhance the release of glutamate at the Schaffer Collateral-CA1 synapses, thereby, intensifying the synaptic strength and plasticity. This novel mechanism involving astrocytic MOR has been shown to participate in hippocampus-dependent conditioned place preference. Furthermore, the signaling of hippocampal MOR, whose action is sexually dimorphic, is engaged in adult neurogenesis, seizure, and stress-induced memory impairment. In this review, we focus on the two profoundly different hippocampal opioid signaling pathways through either GABAergic interneuronal or astrocytic MOR. We further compare and contrast their molecular and cellular mechanisms and their possible roles in opioid-associated conditioned place preference and other hippocampus-dependent behaviors.


Assuntos
Astrócitos/metabolismo , Ácido Glutâmico/metabolismo , Hipocampo/fisiologia , Interneurônios/metabolismo , Receptores Opioides mu/metabolismo , Transdução de Sinais , Animais , Astrócitos/citologia , Ácido Glutâmico/análise , Hipocampo/citologia , Humanos , Interneurônios/citologia , Receptores Opioides mu/análise , Transmissão Sináptica
12.
Nat Neurosci ; 23(12): 1555-1566, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33199896

RESUMO

Although the pathological contributions of reactive astrocytes have been implicated in Alzheimer's disease (AD), their in vivo functions remain elusive due to the lack of appropriate experimental models and precise molecular mechanisms. Here, we show the importance of astrocytic reactivity on the pathogenesis of AD using GiD, a newly developed animal model of reactive astrocytes, where the reactivity of astrocytes can be manipulated as mild (GiDm) or severe (GiDs). Mechanistically, excessive hydrogen peroxide (H2O2) originated from monoamine oxidase B in severe reactive astrocytes causes glial activation, tauopathy, neuronal death, brain atrophy, cognitive impairment and eventual death, which are significantly prevented by AAD-2004, a potent H2O2 scavenger. These H2O2--induced pathological features of AD in GiDs are consistently recapitulated in a three-dimensional culture AD model, virus-infected APP/PS1 mice and the brains of patients with AD. Our study identifies H2O2 from severe but not mild reactive astrocytes as a key determinant of neurodegeneration in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Astrócitos/patologia , Peróxido de Hidrogênio/metabolismo , Doença de Alzheimer/psicologia , Animais , Atrofia , Encéfalo/patologia , Morte Celular , Disfunção Cognitiva/patologia , Modelos Animais de Doenças , Humanos , Ativação de Macrófagos , Camundongos , Camundongos Mutantes Neurológicos , Camundongos Transgênicos , Monoaminoxidase/metabolismo , Degeneração Neural/patologia , Neuroglia , Neurônios/patologia , Memória Espacial , Tauopatias/patologia
14.
Cell Rep ; 32(1): 107861, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32640227

RESUMO

Glucose hypometabolism in cortical structures after functional disconnection is frequently reported in patients with white matter diseases such as subcortical stroke. However, the molecular and cellular mechanisms have been poorly elucidated. Here we show, in an animal model of internal capsular infarct, that GABA-synthesizing reactive astrocytes in distant cortical areas cause glucose hypometabolism via tonic inhibition of neighboring neurons. We find that reversal of aberrant astrocytic GABA synthesis, by pharmacological inhibition and astrocyte-specific gene silencing of MAO-B, reverses the reduction in cortical glucose metabolism. Moreover, induction of aberrant astrocytic GABA synthesis by cortical injection of putrescine or adenovirus recapitulates cortical hypometabolism. Furthermore, MAO-B inhibition causes a remarkable recovery from post-stroke motor deficits when combined with a rehabilitation regimen. Collectively, our data indicate that cortical glucose hypometabolism in subcortical stroke is caused by aberrant astrocytic GABA and MAO-B inhibition and that attenuating cortical hypometabolism can be a therapeutic approach in subcortical stroke.


Assuntos
Astrócitos/metabolismo , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Recuperação de Função Fisiológica , Acidente Vascular Cerebral/metabolismo , Acidente Vascular Cerebral/fisiopatologia , Ácido gama-Aminobutírico/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/patologia , Córtex Cerebral/ultraestrutura , Glucose/metabolismo , Masculino , Modelos Biológicos , Monoaminoxidase/metabolismo , Inibidores da Monoaminoxidase/farmacologia , Atividade Motora/efeitos dos fármacos , Células Piramidais/metabolismo , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos
15.
Curr Biol ; 30(2): 276-291.e9, 2020 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-31928877

RESUMO

Current pharmacological treatments for Parkinson's disease (PD) are focused on symptomatic relief, but not on disease modification, based on the strong belief that PD is caused by irreversible dopaminergic neuronal death. Thus, the concept of the presence of dormant dopaminergic neurons and its possibility as the disease-modifying therapeutic target against PD have not been explored. Here we show that optogenetic activation of substantia nigra pars compacta (SNpc) neurons alleviates parkinsonism in acute PD animal models by recovering tyrosine hydroxylase (TH) from the TH-negative dormant dopaminergic neurons, some of which still express DOPA decarboxylase (DDC). The TH loss depends on reduced dopaminergic neuronal firing under aberrant tonic inhibition, which is attributed to excessive astrocytic GABA. Blocking the astrocytic GABA synthesis recapitulates the therapeutic effect of optogenetic activation. Consistently, SNpc of postmortem PD patients shows a significant population of TH-negative/DDC-positive dormant neurons surrounded by numerous GABA-positive astrocytes. We propose that disinhibiting dormant dopaminergic neurons by blocking excessive astrocytic GABA could be an effective therapeutic strategy against PD.


Assuntos
Astrócitos/metabolismo , Neurônios Dopaminérgicos/fisiologia , Degeneração Neural/fisiopatologia , Doença de Parkinson/fisiopatologia , Tirosina 3-Mono-Oxigenase/metabolismo , Idoso , Idoso de 80 Anos ou mais , Animais , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Humanos , Resposta de Imobilidade Tônica/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Pessoa de Meia-Idade , Doença de Parkinson/terapia , Ratos , Ratos Wistar , Tirosina 3-Mono-Oxigenase/antagonistas & inibidores , Ácido gama-Aminobutírico/biossíntese
16.
Cell Rep ; 28(5): 1154-1166.e5, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365861

RESUMO

The underlying mechanisms of how positive emotional valence (e.g., pleasure) causes preference of an associated context is poorly understood. Here, we show that activation of astrocytic µ-opioid receptor (MOR) drives conditioned place preference (CPP) by means of specific modulation of astrocytic MOR, an exemplar endogenous Gi protein-coupled receptor (Gi-GPCR), in the CA1 hippocampus. Long-term potentiation (LTP) induced by a subthreshold stimulation with the activation of astrocytic MOR at the Schaffer collateral pathway accounts for the memory acquisition to induce CPP. This astrocytic MOR-mediated LTP induction is dependent on astrocytic glutamate released upon activation of the astrocytic MOR and the consequent activation of the presynaptic mGluR1. The astrocytic MOR-dependent LTP and CPP were recapitulated by a chemogenetic activation of astrocyte-specifically expressed Gi-DREADD hM4Di. Our study reveals that the transduction of inhibitory Gi-signaling into augmented excitatory synaptic transmission through astrocytic glutamate is critical for the acquisition of contextual memory for CPP.


Assuntos
Astrócitos/metabolismo , Região CA1 Hipocampal/metabolismo , Memória , Receptores Opioides mu/metabolismo , Animais , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/genética , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Camundongos , Camundongos Knockout , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Receptores Opioides mu/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...