Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; : eadp5577, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900912

RESUMO

Intercellular communication in the nervous system occurs through the release of neurotransmitters into the synaptic cleft between neurons. In the presynaptic neuron, the proton pumping vesicular- or vacuolar-type ATPase (V-ATPase) powers neurotransmitter loading into synaptic vesicles (SVs), with the V1 complex dissociating from the membrane region of the enzyme before exocytosis. We isolated SVs from rat brain using SidK, a V-ATPase-binding bacterial effector protein. Single particle electron cryomicroscopy allowed high-resolution structure determination of V-ATPase within the native SV membrane. In the structure, regularly spaced cholesterol molecules decorate the enzyme's rotor and the abundant SV protein synaptophysin binds the complex stoichiometrically. ATP hydrolysis during vesicle loading results in loss of V1 from the SV membrane, suggesting that loading is sufficient to induce dissociation of the enzyme.

2.
Nature ; 628(8009): 878-886, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509365

RESUMO

Targeted protein degradation and stabilization are promising therapeutic modalities because of their potency, versatility and their potential to expand the druggable target space1,2. However, only a few of the hundreds of E3 ligases and deubiquitinases in the human proteome have been harnessed for this purpose, which substantially limits the potential of the approach. Moreover, there may be other protein classes that could be exploited for protein stabilization or degradation3-5, but there are currently no methods that can identify such effector proteins in a scalable and unbiased manner. Here we established a synthetic proteome-scale platform to functionally identify human proteins that can promote the degradation or stabilization of a target protein in a proximity-dependent manner. Our results reveal that the human proteome contains a large cache of effectors of protein stability. The approach further enabled us to comprehensively compare the activities of human E3 ligases and deubiquitinases, identify and characterize non-canonical protein degraders and stabilizers and establish that effectors have vastly different activities against diverse targets. Notably, the top degraders were more potent against multiple therapeutically relevant targets than the currently used E3 ligases cereblon and VHL. Our study provides a functional catalogue of stability effectors for targeted protein degradation and stabilization and highlights the potential of induced proximity screens for the discovery of new proximity-dependent protein modulators.


Assuntos
Enzimas Desubiquitinantes , Estabilidade Proteica , Proteólise , Proteoma , Proteômica , Ubiquitina-Proteína Ligases , Humanos , Enzimas Desubiquitinantes/análise , Enzimas Desubiquitinantes/metabolismo , Proteoma/metabolismo , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/metabolismo , Especificidade por Substrato , Quimera de Direcionamento de Proteólise/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
3.
Addict Behav ; 152: 107978, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38306868

RESUMO

BACKGROUND: Problematic cannabis use is associated with endorsement of psychotic-like experiences (PLEs) in non-clinical samples. However, little is known in regard to predictors of this relationship, which may be relevant to prevention and intervention. In the present research, we investigate impulsivity and cannabis use motives as potential distal and proximal risk factors for PLEs using conditional process analysis. METHODS: Using an online cross-sectional survey of N = 300 students, we assessed endorsement of PLEs using the Community Assessment of Psychic Experiences (CAPE), problematic cannabis use with the Cannabis Use Disorder Identification Test (CUDIT-R), motivations for using cannabis with the Substance Use Motives Measure, and impulsivity using the Urgency and Premeditation, Perseverance, Sensation Seeking, Positive Urgency Impulsive Behaviour Scale (UPPS-P). RESULTS: All three subscales on the CAPE were associated with significantly higher scores on the CUDIT-R. Before and after covarying for sex, we found that higher CUDIT-R scores mediated the relations between lack of perseverance and negative urgency impulsivity with higher PLE symptoms. Furthermore, the indirect effect of cannabis use on the relationship between lack of perseverance and high negative PLE symptoms was only significant at high and moderate levels of depression-coping, but not at low depression-coping motives. CONCLUSION: Impulsivity and depression-coping motives may be distal and proximal psychological risk factors for negative PLEs in the context of problematic cannabis use. Our findings are in line with the broader substance use and mental health literature and may be informative for cannabis use treatment targets.


Assuntos
Cannabis , Transtornos Relacionados ao Uso de Substâncias , Humanos , Estudos Transversais , Fatores de Risco , Transtornos Relacionados ao Uso de Substâncias/psicologia , Comportamento Impulsivo , Inquéritos e Questionários
4.
Drug Alcohol Depend ; 254: 111054, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091900

RESUMO

BACKGROUND: Emerging adults who endorse more positive psychotic-like experiences (PLEs; bizarre experiences, delusional ideations) may experience greater cannabis-related impairments in executive function. Negative and depressive PLEs are also associated with cannabis use, however, less is known about their relation to executive functioning. Here, we hypothesize that high positive PLEs and cannabis use are associated with worse performance on computerized versions of the Iowa Gambling Task (IGT) and the Card Sorting Task (CST); exploratory analyses are conducted with negative and depressive PLEs. METHODS: We recruited university students (N = 543) who completed an online study consisting of self-report measures of problematic cannabis use (Cannabis Use Disorder Identification Test; CUDIT-R) and PLEs (Community Assessment of Psychotic Experiences; CAPE). Of these, n=270 completed the CST and n=251 completed the IGT. RESULTS: Problematic cannabis use and high endorsement of positive PLEs related to significantly worse performance on the IGT and greater perseverative errors on the CST. In addition, people who endorsed high levels of positive PLEs were also significantly more likely to complete the IGT with less money relative to those who endorsed fewer PLEs, regardless of cannabis use. Further analyses based on negative PLEs revealed a similar pattern for perseverative errors on the CST; depressive PLEs were not related to task performance. CONCLUSION: Findings highlight that problematic cannabis use and more frequent and distressing positive PLEs are associated with poorer executive functioning. Thus, executive functioning may have implications for intervention among those high on both attributes, who are at high risk of onset of psychosis.


Assuntos
Cannabis , Transtornos Psicóticos , Adulto , Humanos , Função Executiva , Autorrelato , Estudantes , Inquéritos e Questionários
5.
Anal Chem ; 95(49): 17981-17987, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38032138

RESUMO

Despite continuous technological improvements in sample preparation, mass-spectrometry-based proteomics for trace samples faces the challenges of sensitivity, quantification accuracy, and reproducibility. Herein, we explored the applicability of turboDDA (a method that uses data-dependent acquisition without dynamic exclusion) for quantitative proteomics of trace samples. After systematic optimization of acquisition parameters, we compared the performance of turboDDA with that of data-dependent acquisition with dynamic exclusion (DEDDA). By benchmarking the analysis of trace unlabeled human cell digests, turboDDA showed substantially better sensitivity in comparison with DEDDA, whether for unfractionated or high pH fractionated samples. Furthermore, through designing an iTRAQ-labeled three-proteome model (i.e., tryptic digest of protein lysates from yeast, human, and E. coli) to document the interference effect, we evaluated the quantification interference, accuracy, reproducibility of iTRAQ labeled trace samples, and the impact of PIF (precursor intensity fraction) cutoff for different approaches (turboDDA and DEDDA). The results showed that improved quantification accuracy and reproducibility could be achieved by turboDDA, while a more stringent PIF cutoff resulted in more accurate quantification but less peptide identification for both approaches. Finally, the turboDDA strategy was applied to the differential analysis of limited amounts of human lung cancer cell samples, showing great promise in trace proteomics sample analysis.


Assuntos
Proteoma , Espectrometria de Massas em Tandem , Humanos , Proteoma/análise , Espectrometria de Massas em Tandem/métodos , Escherichia coli/metabolismo , Reprodutibilidade dos Testes , Peptídeos
6.
Hum Genet ; 142(11): 1571-1586, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37755482

RESUMO

CYP26B1 metabolizes retinoic acid in the developing embryo to regulate its levels. A limited number of individuals with pathogenic variants in CYP26B1 have been documented with a varied phenotypic spectrum, spanning from a severe manifestation involving skull anomalies, craniosynostosis, encephalocele, radio-humeral fusion, oligodactyly, and a narrow thorax, to a milder presentation characterized by craniosynostosis, restricted radio-humeral joint mobility, hearing loss, and intellectual disability. Here, we report two families with CYP26B1-related phenotypes and describe the data obtained from functional studies of the variants. Exome and Sanger sequencing were used for variant identification in family 1 and family 2, respectively. Family 1 reflects a mild phenotype, which includes craniofacial dysmorphism with brachycephaly (without craniosynostosis), arachnodactyly, reduced radioulnar joint movement, conductive hearing loss, learning disability-and compound heterozygous CYP26B1 variants: (p.[(Pro118Leu)];[(Arg234Gln)]) were found. In family 2, a stillborn fetus presented a lethal phenotype with spina bifida occulta, hydrocephalus, poor skeletal mineralization, synostosis, limb defects, and a synonymous homozygous variant in CYP26B1: c.1083C > A. A minigene assay revealed that the synonymous variant created a new splice site, removing part of exon 5 (p.Val361_Asp382del). Enzymatic activity was assessed using a luciferase assay, demonstrating a notable reduction in exogenous retinoic acid metabolism for the variant p.Val361_Asp382del. (~ 3.5 × decrease compared to wild-type); comparatively, the variants p.(Pro118Leu) and p.(Arg234Gln) demonstrated a partial loss of metabolism (1.7× and 2.3× reduction, respectively). A proximity-dependent biotin identification assay reaffirmed previously reported ER-resident protein interactions. Additional work into these interactions is critical to determine if CYP26B1 is involved with other biological events on the ER. Immunofluorescence assay suggests that mutant CYP26B1 is still localized in the endoplasmic reticulum. These results indicate that novel pathogenic variants in CYP26B1 result in varying levels of enzymatic activity that impact retinoic acid metabolism and relate to the distinct phenotypes observed.


Assuntos
Craniossinostoses , Tretinoína , Humanos , Ácido Retinoico 4 Hidroxilase/genética , Tretinoína/metabolismo , Homozigoto , Éxons , Craniossinostoses/genética
7.
Cell Chem Biol ; 30(7): 795-810.e8, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37369212

RESUMO

Rising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus. Mechanistic studies indicated that NPD6433 targets the enoyl reductase domain of fatty acid synthase 1 (Fas1), covalently inhibiting its flavin mononucleotide-dependent NADPH-oxidation activity and arresting essential fatty acid biosynthesis. Robust Fas1 inhibition kills Candida albicans, while sublethal inhibition impairs diverse virulence traits. At well-tolerated exposures, NPD6433 extended the lifespan of nematodes infected with azole-resistant C. albicans. Overall, identification of NPD6433 provides a tool with which to explore lipid homeostasis as a therapeutic target in pathogenic fungi and reveals a mechanism by which Fas1 function can be inhibited.


Assuntos
Antifúngicos , Candida albicans , Humanos , Antifúngicos/farmacologia , Aspergillus fumigatus , Virulência , Testes de Sensibilidade Microbiana
8.
J Cell Sci ; 136(8)2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-37013443

RESUMO

Calcineurin, or protein phosphatase 2B (PP2B), the Ca2+ and calmodulin-activated phosphatase and target of immunosuppressants, has many substrates and functions that remain uncharacterized. By combining rapid proximity-dependent labeling with cell cycle synchronization, we mapped the spatial distribution of calcineurin in different cell cycle stages. While calcineurin-proximal proteins did not vary significantly between interphase and mitosis, calcineurin consistently associated with multiple centrosomal and/or ciliary proteins. These include POC5, which binds centrins in a Ca2+-dependent manner and is a component of the luminal scaffold that stabilizes centrioles. We show that POC5 contains a calcineurin substrate motif (PxIxIT type) that mediates calcineurin binding in vivo and in vitro. Using indirect immunofluorescence and ultrastructure expansion microscopy, we demonstrate that calcineurin colocalizes with POC5 at the centriole, and further show that calcineurin inhibitors alter POC5 distribution within the centriole lumen. Our discovery that calcineurin directly associates with centriolar proteins highlights a role for Ca2+ and calcineurin signaling at these organelles. Calcineurin inhibition promotes elongation of primary cilia without affecting ciliogenesis. Thus, Ca2+ signaling within cilia includes previously unknown functions for calcineurin in maintenance of cilia length, a process that is frequently disrupted in ciliopathies.


Assuntos
Calcineurina , Cílios , Calcineurina/metabolismo , Cílios/metabolismo , Cálcio/metabolismo , Centrossomo/metabolismo , Centríolos/metabolismo , Proteínas/metabolismo
9.
J Proteome Res ; 22(6): 1660-1681, 2023 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071664

RESUMO

The DNA repair scaffold SLX4 has pivotal roles in cellular processes that maintain genome stability, most notably homologous recombination. Germline mutations in SLX4 are associated with Fanconi anemia, a disease characterized by chromosome instability and cancer susceptibility. The role of mammalian SLX4 in homologous recombination depends critically on binding and activating structure-selective endonucleases, namely SLX1, MUS81-EME1, and XPF-ERCC1. Increasing evidence indicates that cells rely on distinct SLX4-dependent complexes to remove DNA lesions in specific regions of the genome. Despite our understanding of SLX4 as a scaffold for DNA repair proteins, a detailed repertoire of SLX4 interactors has never been reported. Here, we provide a comprehensive map of the human SLX4 interactome using proximity-dependent biotin identification (BioID) and affinity purification coupled to mass spectrometry (AP-MS). We identified 221 unique high-confidence interactors, of which the vast majority represent novel SLX4-binding proteins. Network analysis of these hits revealed pathways with known involvement of SLX4, such as DNA repair, and several emerging pathways of interest, including RNA metabolism and chromatin remodeling. In summary, the comprehensive SLX4 interactome we report here provides a deeper understanding of how SLX4 functions in DNA repair while revealing new cellular processes that may involve SLX4.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA , Animais , Humanos , Proteínas de Ligação a DNA/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , DNA/genética , Recombinação Homóloga , Mamíferos/genética , Mamíferos/metabolismo , Recombinases/química , Recombinases/genética , Recombinases/metabolismo
10.
Cell ; 186(6): 1162-1178.e20, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931244

RESUMO

Germline histone H3.3 amino acid substitutions, including H3.3G34R/V, cause severe neurodevelopmental syndromes. To understand how these mutations impact brain development, we generated H3.3G34R/V/W knock-in mice and identified strikingly distinct developmental defects for each mutation. H3.3G34R-mutants exhibited progressive microcephaly and neurodegeneration, with abnormal accumulation of disease-associated microglia and concurrent neuronal depletion. G34R severely decreased H3K36me2 on the mutant H3.3 tail, impairing recruitment of DNA methyltransferase DNMT3A and its redistribution on chromatin. These changes were concurrent with sustained expression of complement and other innate immune genes possibly through loss of non-CG (CH) methylation and silencing of neuronal gene promoters through aberrant CG methylation. Complement expression in G34R brains may lead to neuroinflammation possibly accounting for progressive neurodegeneration. Our study reveals that H3.3G34-substitutions have differential impact on the epigenome, which underlie the diverse phenotypes observed, and uncovers potential roles for H3K36me2 and DNMT3A-dependent CH-methylation in modulating synaptic pruning and neuroinflammation in post-natal brains.


Assuntos
DNA Metiltransferase 3A , Histonas , Animais , Camundongos , DNA (Citosina-5-)-Metiltransferases/genética , Metilação de DNA/genética , Metilases de Modificação do DNA/genética , Histonas/metabolismo , Doenças Neuroinflamatórias
11.
Structure ; 31(2): 185-200.e10, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586405

RESUMO

The mitochondrial ClpP protease is responsible for mitochondrial protein quality control through specific degradation of proteins involved in several metabolic processes. ClpP overexpression is also required in many cancer cells to eliminate reactive oxygen species (ROS)-damaged proteins and to sustain oncogenesis. Targeting ClpP to dysregulate its function using small-molecule agonists is a recent strategy in cancer therapy. Here, we synthesized imipridone-derived compounds and related chemicals, which we characterized using biochemical, biophysical, and cellular studies. Using X-ray crystallography, we found that these compounds have enhanced binding affinities due to their greater shape and charge complementarity with the surface hydrophobic pockets of ClpP. N-terminome profiling of cancer cells upon treatment with one of these compounds revealed the global proteomic changes that arise and identified the structural motifs preferred for protein cleavage by compound-activated ClpP. Together, our studies provide the structural and molecular basis by which dysregulated ClpP affects cancer cell viability and proliferation.


Assuntos
Mitocôndrias , Proteômica , Mitocôndrias/metabolismo , Endopeptidase Clp/genética , Endopeptidase Clp/metabolismo , Proteólise
12.
Nat Chem Biol ; 18(12): 1370-1379, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35970996

RESUMO

Pyrvinium is a quinoline-derived cyanine dye and an approved anti-helminthic drug reported to inhibit WNT signaling and have anti-proliferative effects in various cancer cell lines. To further understand the mechanism by which pyrvinium is cytotoxic, we conducted a pooled genome-wide CRISPR loss-of-function screen in the human HAP1 cell model. The top drug-gene sensitizer interactions implicated the malate-aspartate and glycerol-3-phosphate shuttles as mediators of cytotoxicity to mitochondrial complex I inhibition including pyrvinium. By contrast, perturbation of the poorly characterized gene C1orf115/RDD1 resulted in strong resistance to the cytotoxic effects of pyrvinium through dysregulation of the major drug efflux pump ABCB1/MDR1. Interestingly, C1orf115/RDD1 was found to physically associate with ABCB1/MDR1 through proximity-labeling experiments and perturbation of C1orf115 led to mis-localization of ABCB1/MDR1. Our results are consistent with a model whereby C1orf115 modulates drug efflux through regulation of the major drug exporter ABCB1/MDR1.


Assuntos
Antineoplásicos , Compostos de Pirvínio , Humanos , Compostos de Pirvínio/farmacologia , Via de Sinalização Wnt , Antineoplásicos/farmacologia , Genômica
14.
Anal Chem ; 94(30): 10579-10583, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35848333

RESUMO

Systematic analysis of affinity-purified samples by liquid chromatography coupled to mass spectrometry (LC-MS) requires high coverage, reproducibility, and sensitivity. While data-independent acquisition (DIA) approaches improve the reproducibility of protein-protein interaction detection as compared to standard data-dependent acquisition approaches, the need for library generation reduces their throughput, and analysis pipelines are still being optimized. In this study, we report the development of a simple and robust approach, termed turboDDA, to improve interactome analysis using spectral counting and data-dependent acquisition (DDA) by eliminating the dynamic exclusion (DE) step and optimizing the acquisition parameters. Using representative interaction and proximity proteomics samples, we detected increases in identified interactors of 18-71% compared to all samples analyzed by standard DDA with dynamic exclusion and for most samples analyzed by DIA with the MSPLIT-DIA spectral counting approach. In summary, turboDDA provides better sensitivity and identifies more high-confident interactors than the optimized DDA with DE and comparable or better sensitivity than DIA spectral counting approaches.


Assuntos
Proteômica , Cromatografia Líquida/métodos , Espectrometria de Massas/métodos , Proteômica/métodos , Reprodutibilidade dos Testes
15.
Biomater Sci ; 10(11): 2972-2990, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35521809

RESUMO

When decellularizing kidneys, it is important to maintain the integrity of the acellular extracellular matrix (ECM), including associated adhesion proteins and growth factors that allow recellularized cells to adhere and migrate according to ECM specificity. Kidney decellularization requires the ionic detergent sodium dodecyl sulfate (SDS); however, this results in a loss of ECM proteins important for cell adherence, migration, and growth, particularly glycosaminoglycan (GAG)-associated proteins. Here, we demonstrate that using submicellar concentrations of SDS results in a greater retention of structural proteins, GAGs, growth factors, and cytokines. When porcine kidney ECM scaffolds were recellularized using human adult primary renal epithelial cells (RECs), the ECM promoted cell survival and the uniform distribution of cells throughout the ECM. Cells maintained the expression of mature renal epithelial markers but did not organize on the ECM, indicating that mature cells are unable to migrate to specific locations on ECM scaffolds.


Assuntos
Proteínas da Matriz Extracelular , Alicerces Teciduais , Animais , Células Epiteliais , Matriz Extracelular/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Humanos , Rim/química , Suínos , Engenharia Tecidual/métodos , Alicerces Teciduais/química
17.
Nat Commun ; 12(1): 6497, 2021 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-34764269

RESUMO

Fungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C. albicans and expand the largest functional genomics resource in this pathogen (the GRACE collection) by 866 genes. Using this model and chemogenomic analyses, we define the function of three uncharacterized essential genes with roles in kinetochore function, mitochondrial integrity, and translation, and identify the glutaminyl-tRNA synthetase Gln4 as the target of N-pyrimidinyl-ß-thiophenylacrylamide (NP-BTA), an antifungal compound.


Assuntos
Aprendizado de Máquina , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Estudo de Associação Genômica Ampla , Cinetocoros/metabolismo , Biologia de Sistemas/métodos
18.
Cell Rep ; 36(8): 109584, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34433036

RESUMO

Evasion of killing by immune cells is crucial for fungal survival in the host. For the human fungal pathogen Candida albicans, internalization by macrophages induces a transition from yeast to filaments that promotes macrophage death and fungal escape. Nutrient deprivation, alkaline pH, and oxidative stress have been implicated as triggers of intraphagosomal filamentation; however, the impact of other host-derived factors remained unknown. Here, we show that lysates prepared from macrophage-like cell lines and primary macrophages robustly induce C. albicans filamentation. Enzymatic treatment of lysate implicates a phosphorylated protein, and bioactivity-guided fractionation coupled to mass spectrometry identifies the immunomodulatory phosphoprotein PTMA as a candidate trigger of C. albicans filamentation. Immunoneutralization of PTMA within lysate abolishes its activity, strongly supporting PTMA as a filament-inducing component of macrophage lysate. Adding to the known repertoire of physical factors, this work implicates a host protein in the induction of C. albicans filamentation within immune cells.


Assuntos
Proteínas Fúngicas/imunologia , Hifas/patogenicidade , Macrófagos/imunologia , Fagossomos/microbiologia , Candida albicans/metabolismo , Candida albicans/patogenicidade , Linhagem Celular , Proteínas Fúngicas/metabolismo , Humanos , Hifas/metabolismo , Evasão da Resposta Imune/imunologia
19.
Nature ; 595(7865): 120-124, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34079125

RESUMO

Compartmentalization is a defining characteristic of eukaryotic cells, and partitions distinct biochemical processes into discrete subcellular locations. Microscopy1 and biochemical fractionation coupled with mass spectrometry2-4 have defined the proteomes of a variety of different organelles, but many intracellular compartments have remained refractory to such approaches. Proximity-dependent biotinylation techniques such as BioID provide an alternative approach to define the composition of cellular compartments in living cells5-7. Here we present a BioID-based map of a human cell on the basis of 192 subcellular markers, and define the intracellular locations of 4,145 unique proteins in HEK293 cells. Our localization predictions exceed the specificity of previous approaches, and enabled the discovery of proteins at the interface between the mitochondrial outer membrane and the endoplasmic reticulum that are crucial for mitochondrial homeostasis. On the basis of this dataset, we created humancellmap.org as a community resource that provides online tools for localization analysis of user BioID data, and demonstrate how this resource can be used to understand BioID results better.


Assuntos
Biotinilação , Compartimento Celular , Transporte Proteico , Proteoma/análise , Proteoma/química , Células Cultivadas , Conjuntos de Dados como Assunto , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Células HEK293 , Células HeLa , Homeostase , Humanos , Espectrometria de Massas , Mitocôndrias/química , Mitocôndrias/metabolismo , Organelas/química , Organelas/metabolismo , Proteoma/metabolismo , Reprodutibilidade dos Testes
20.
Mol Cell Biol ; 41(3): e0033320, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33397691

RESUMO

PH domain leucine-rich repeat protein phosphatase 1 (PHLPP1) is a tumor suppressor that directly dephosphorylates a wide array of substrates, most notably the prosurvival kinase Akt. However, little is known about the molecular mechanisms governing PHLPP1 itself. Here, we report that PHLPP1 is dynamically regulated in a cell cycle-dependent manner and deletion of PHLPP1 results in mitotic delays and increased rates of chromosomal segregation errors. We show that PHLPP1 is hyperphosphorylated during mitosis by Cdk1 in a functionally uncharacterized region known as the PHLPP1 N-terminal extension (NTE). A proximity-dependent biotin identification (BioID) interaction screen revealed that during mitosis, PHLPP1 dissociates from plasma membrane scaffolds, such as Scribble, by a mechanism that depends on its NTE and gains proximity to kinetochore and mitotic spindle proteins such as KNL1 and TPX2. Our data are consistent with a model in which phosphorylation of PHLPP1 during mitosis regulates binding to its mitotic partners and allows accurate progression through mitosis. The finding that PHLPP1 binds mitotic proteins in a cell cycle- and phosphorylation-dependent manner may have relevance to its tumor-suppressive function.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...