Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Hum Mol Genet ; 33(8): 698-708, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38268317

RESUMO

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.


Assuntos
Distrofia Muscular Facioescapuloumeral , Humanos , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteínas de Homeodomínio/genética , Ensaios Clínicos como Assunto , Músculo Esquelético/metabolismo , Imageamento por Ressonância Magnética , Biomarcadores/metabolismo , Progressão da Doença
2.
PLoS Biol ; 21(9): e3002317, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37747887

RESUMO

Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.


Assuntos
Proteínas de Homeodomínio , Distrofia Muscular Facioescapuloumeral , Fatores de Transcrição , Humanos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
bioRxiv ; 2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36865168

RESUMO

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression, but reproducibility across studies needs further validation. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA. Together with moderate-to-strong correlations of gene signatures and MRI characteristics between the TA muscles bilaterally, these results suggest a whole muscle model of disease progression and provide a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design.

4.
Hum Mol Genet ; 31(11): 1821-1829, 2022 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34919696

RESUMO

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.


Assuntos
Distrofia Muscular Facioescapuloumeral , Biomarcadores , Humanos , Estudos Longitudinais , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética
5.
Hum Mol Genet ; 31(10): 1694-1704, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-34888646

RESUMO

Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral muscular dystrophy (FSHD). Human DUX4 and mouse Dux are retrogenes derived from retrotransposition of the mRNA from the parental DUXC gene. Primates and rodents have lost the parental DUXC gene, and it is unknown whether DUXC had a similar role in driving an early pluripotent transcriptional program. Dogs and other Laurasiatherians have retained DUXC, providing an opportunity to determine the functional similarity to the retrotransposed DUX4 and Dux. Here, we identify the expression of two isoforms of DUXC mRNA in canine testis tissues: one encoding the canonical double homeodomain protein (DUXC), similar to DUX4/Dux, and a second that includes an in-frame alternative exon that disrupts the conserved amino acid sequence of the first homeodomain (DUXC-ALT). The expression of DUXC in canine cells induces a pluripotent program similar to DUX4 and Dux and induces the expression of a similar set of retrotransposons of the ERV/MaLR and LINE-1 families, as well as pericentromeric satellite repeats; whereas DUXC-ALT did not robustly activate gene expression in these assays. Important for preclinical models of FSHD, human DUX4 and canine DUXC show higher conservation of their homeodomains and corresponding binding motifs compared with the conservation between human DUX4 and mouse Dux, and human DUX4 activates a highly similar transcriptional program in canine cells. Together, these findings show that retrotransposition resulted in the loss of an alternatively spliced isoform and that DUXC containing mammals might be good candidates for certain preclinical models ofFSHD.


Assuntos
Distrofia Muscular Facioescapuloumeral , Sequência de Aminoácidos , Animais , Cães , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , RNA Mensageiro/metabolismo , Retroelementos/genética
6.
Hum Mol Genet ; 29(6): 1030-1043, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32083293

RESUMO

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to the discovery of candidate therapeutics, and it is important to identify markers of disease activity to inform clinical trial design. For drugs that inhibit DUX4 expression, measuring DUX4 or DUX4-target gene expression might be an interim measure of drug activity; however, only a subset of FHSD muscle biopsies shows evidence of DUX4 expression. Our prior study showed that MRI T2-STIR-positive muscles had a higher probability of showing DUX4 expression than muscles with normal MRI characteristics. In the current study, we performed a 1-year follow-up assessment of the same muscle with repeat MRI and muscle biopsy. There was little change in MRI characteristics over the 1-year period and, similar to the initial evaluation, MRI T2-STIR-postive muscles had a higher expression of DUX4-regulated genes, as well as genes associated with inflammation, extracellular matrix and cell cycle. Compared to the initial evaluation, overall the level of expression in these gene categories remained stable over the 1-year period; however, there was some variability for each individual muscle biopsied. The pooled data from both the initial and 1-year follow-up evaluations identified several FSHD subgroups based on gene expression, as well as a set of genes-composed of DUX4-target genes, inflammatory and immune genes and cell cycle control genes-that distinguished all of the FSHD samples from the controls. These candidate markers of disease activity need to be replicated in independent datasets and, if validated, may provide useful measures of disease progression and response to therapy.


Assuntos
Biomarcadores/análise , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , RNA-Seq/métodos , Adulto , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Adulto Jovem
7.
Cell Rep ; 29(7): 1812-1820.e5, 2019 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-31722199

RESUMO

The DUX4 transcription factor is briefly expressed in the early cleavage-stage embryo, where it induces an early wave of zygotic gene transcription, whereas its mis-expression in skeletal muscle causes the muscular dystrophy facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4 induces the expression of the histone variants H3.X and H3.Y. We have used a myoblast cell line with doxycycline-inducible DUX4 to show that these histone variants are incorporated throughout the body of DUX4-induced genes. Following a brief pulse of DUX4, these histones contribute to greater perdurance and to enhanced re-activation of DUX4 target gene expression. These findings provide a model for H3.X/Y as a chromatin mechanism that facilitates the expression of DUX4 target genes subsequent to a brief pulse of DUX4 expression.


Assuntos
Regulação da Expressão Gênica , Histonas/metabolismo , Proteínas de Homeodomínio/metabolismo , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Linhagem Celular , Histonas/genética , Proteínas de Homeodomínio/genética , Humanos , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia
8.
Hum Mol Genet ; 28(23): 3997-4011, 2019 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-31630170

RESUMO

The DUX4 transcription factor is normally expressed in the cleavage-stage embryo and regulates genes involved in embryonic genome activation. Misexpression of DUX4 in skeletal muscle, however, is toxic and causes facioscapulohumeral muscular dystrophy (FSHD). We recently showed DUX4-induced toxicity is due, in part, to the activation of the double-stranded RNA (dsRNA) response pathway and the accumulation of intranuclear dsRNA foci. Here, we determined the composition of DUX4-induced dsRNAs. We found that a subset of DUX4-induced dsRNAs originate from inverted Alu repeats embedded within the introns of DUX4-induced transcripts and from DUX4-induced dsRNA-forming intergenic transcripts enriched for endogenous retroviruses, Alu and LINE-1 elements. However, these repeat classes were also represented in dsRNAs from cells not expressing DUX4. In contrast, pericentric human satellite II (HSATII) repeats formed a class of dsRNA specific to the DUX4 expressing cells. Further investigation revealed that DUX4 can initiate the bidirectional transcription of normally heterochromatin-silenced HSATII repeats. DUX4-induced HSATII RNAs co-localized with DUX4-induced nuclear dsRNA foci and with intranuclear aggregation of EIF4A3 and ADAR1. Finally, gapmer-mediated knockdown of HSATII transcripts depleted DUX4-induced intranuclear ribonucleoprotein aggregates and decreased DUX4-induced cell death, suggesting that HSATII-formed dsRNAs contribute to DUX4 toxicity.


Assuntos
DNA Satélite/genética , Proteínas de Homeodomínio/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Adenosina Desaminase/genética , Adenosina Desaminase/metabolismo , Linhagem Celular , DNA Satélite/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Humanos , Íntrons , Modelos Biológicos , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/metabolismo , Mioblastos/metabolismo , RNA de Cadeia Dupla/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/genética
9.
Hum Mol Genet ; 28(3): 476-486, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30312408

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is a common, dominantly inherited disease caused by the epigenetic de-repression of the DUX4 gene, a transcription factor normally repressed in skeletal muscle. As targeted therapies are now possible in FSHD, a better understanding of the relationship between DUX4 activity, muscle pathology and muscle magnetic resonance imaging (MRI) changes is crucial both to understand disease mechanisms and for the design of future clinical trials. Here, we performed MRIs of the lower extremities in 36 individuals with FSHD, followed by needle muscle biopsies in safely accessible muscles. We examined the correlation between MRI characteristics, muscle pathology and expression of DUX4 target genes. Results show that the presence of elevated MRI short tau inversion recovery signal has substantial predictive value in identifying muscles with active disease as determined by histopathology and DUX4 target gene expression. In addition, DUX4 target gene expression was detected only in FSHD-affected muscles and not in control muscles. These results support the use of MRI to identify FSHD muscles most likely to have active disease and higher levels of DUX4 target gene expression and might be useful in early phase therapeutic trials to demonstrate target engagement in therapies aiming to suppress DUX4 expression.


Assuntos
Proteínas de Homeodomínio/genética , Músculo Esquelético/patologia , Distrofia Muscular Facioescapuloumeral/diagnóstico por imagem , Adulto , Idoso , Biópsia , Feminino , Expressão Gênica , Proteínas de Homeodomínio/biossíntese , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/metabolismo , Distrofia Muscular Facioescapuloumeral/patologia , Fatores de Transcrição/genética
10.
Hum Mol Genet ; 27(15): 2644-2657, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741619

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is caused by insufficient epigenetic repression of D4Z4 macrosatellite repeat where DUX4, an FSHD causing gene is embedded. There are two forms of FSHD, FSHD1 with contraction of D4Z4 repeat and FSHD2 with chromatin compaction defects mostly due to SMCHD1 mutation. Previous reports showed DUX4-induced gene expression changes as well as changes in microRNA expression in FSHD muscle cells. However, a genome wide analysis of small noncoding RNAs that might be regulated by DUX4 or by mutations in SMCHD1 has not been reported yet. Here, we identified several types of small noncoding RNAs including known microRNAs that are differentially expressed in FSHD2 muscle cells compared to control. Although fewer small RNAs were differentially expressed during muscle differentiation in FSHD2 cells compared to controls, most of the known myogenic microRNAs, such as miR1, miR133a and miR206 were induced in both FSHD2 and control muscle cells during differentiation. Our small RNA sequencing data analysis also revealed both DUX4- and SMCHD1-specific changes in FSHD2 muscle cells. Six FSHD2 microRNAs were affected by DUX4 overexpression in control myoblasts, whereas increased expression of tRNAs and 5S rRNAs in FSHD2 muscle cells was largely recapitulated in SMCHD1-depleted control myoblasts. Altogether, our studies suggest that the small noncoding RNA transcriptome changes in FSHD2 might be different from those in FSHD1 and that these differences may provide new diagnostic and therapeutic tools specific to FSHD2.


Assuntos
Proteínas Cromossômicas não Histona/genética , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Pequeno RNA não Traduzido/genética , Estudos de Casos e Controles , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , MicroRNAs/genética , Fibras Musculares Esqueléticas/patologia , Fibras Musculares Esqueléticas/fisiologia , Mutação , Mioblastos/patologia , Mioblastos/fisiologia , RNA Ribossômico 5S/genética , RNA de Transferência/genética , Reprodutibilidade dos Testes
11.
Skelet Muscle ; 7(1): 12, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28587678

RESUMO

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is in most cases caused by a contraction of the D4Z4 macrosatellite repeat on chromosome 4 (FSHD1) or by mutations in the SMCHD1 or DNMT3B gene (FSHD2). Both situations result in the incomplete epigenetic repression of the D4Z4-encoded retrogene DUX4 in somatic cells, leading to the aberrant expression of DUX4 in the skeletal muscle. In mice, Smchd1 regulates chromatin repression at different loci, having a role in CpG methylation establishment and/or maintenance. METHODS: To investigate the global effects of harboring heterozygous SMCHD1 mutations on DNA methylation in humans, we combined 450k methylation analysis on mononuclear monocytes from female heterozygous SMCHD1 mutation carriers and unaffected controls with reduced representation bisulfite sequencing (RRBS) on FSHD2 and control myoblast cell lines. Candidate loci were then evaluated for SMCHD1 binding using ChIP-qPCR and expression was evaluated using RT-qPCR. RESULTS: We identified a limited number of clustered autosomal loci with CpG hypomethylation in SMCHD1 mutation carriers: the protocadherin (PCDH) cluster on chromosome 5, the transfer RNA (tRNA) and 5S rRNA clusters on chromosome 1, the HOXB and HOXD clusters on chromosomes 17 and 2, respectively, and the D4Z4 repeats on chromosomes 4 and 10. Furthermore, minor increases in RNA expression were seen in FSHD2 myoblasts for some of the PCDHß cluster isoforms, tRNA isoforms, and a HOXB isoform in comparison to controls, in addition to the previously reported effects on DUX4 expression. SMCHD1 was bound at DNAseI hypersensitivity sites known to regulate the PCDHß cluster and at the chromosome 1 tRNA cluster, with decreased binding in SMCHD1 mutation carriers at the PCDHß cluster sites. CONCLUSIONS: Our study is the first to investigate the global methylation effects in humans resulting from heterozygous mutations in SMCHD1. Our results suggest that SMCHD1 acts as a repressor on a limited set of autosomal gene clusters, as an observed reduction in methylation associates with a loss of SMCHD1 binding and increased expression for some of the loci.


Assuntos
Proteínas Cromossômicas não Histona/genética , Metilação de DNA , Loci Gênicos , Distrofia Muscular Facioescapuloumeral/genética , Células Cultivadas , Proteínas Cromossômicas não Histona/metabolismo , Ilhas de CpG , Feminino , Heterozigoto , Humanos , Família Multigênica , Distrofia Muscular Facioescapuloumeral/metabolismo , Mutação , Mioblastos/metabolismo , Ligação Proteica
12.
Nat Genet ; 49(6): 935-940, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28459454

RESUMO

Facioscapulohumeral dystrophy (FSHD; MIM158900, MIM158901) is caused by misexpression of the DUX4 transcription factor in skeletal muscle. Animal models of FSHD are hindered by incomplete knowledge regarding the conservation of the DUX4 transcriptional program in other species. Despite the divergence of their binding motifs, both mouse DUX and human DUX4 in mouse and human muscle cells, respectively, activate genes associated with cleavage-stage embryos, including MERVL and ERVL-MaLR retrotransposons. We found that human DUX4 expressed in mouse cells maintained modest activation of cleavage-stage genes driven by conventional promoters but did not activate MERVL-promoted genes. Thus, the ancestral DUX4-regulated genes are characteristic of cleavage-stage embryos and are driven by conventional promoters, whereas divergence of the DUX4 and DUX homeodomains correlates with retrotransposon specificity. These results provide insight into how species balance conservation of a core transcriptional program with innovation at retrotransposon promoters, and establish a basis for animal models recreating the FSHD transcriptome.


Assuntos
Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Animais , Sítios de Ligação , Células Cultivadas , Cães , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos Transgênicos , Distrofia Muscular Facioescapuloumeral/genética , Mioblastos/citologia , Mioblastos/fisiologia , Retroelementos , Sítio de Iniciação de Transcrição
13.
PLoS Genet ; 13(3): e1006658, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28273136

RESUMO

Facioscapulohumeral dystrophy (FSHD) is caused by the mis-expression of DUX4 in skeletal muscle cells. DUX4 is a transcription factor that activates genes normally associated with stem cell biology and its mis-expression in FSHD cells results in apoptosis. To identify genes and pathways necessary for DUX4-mediated apoptosis, we performed an siRNA screen in an RD rhabdomyosarcoma cell line with an inducible DUX4 transgene. Our screen identified components of the MYC-mediated apoptotic pathway and the double-stranded RNA (dsRNA) innate immune response pathway as mediators of DUX4-induced apoptosis. Further investigation revealed that DUX4 expression led to increased MYC mRNA, accumulation of nuclear dsRNA foci, and activation of the dsRNA response pathway in both RD cells and human myoblasts. Nuclear dsRNA foci were associated with aggregation of the exon junction complex component EIF4A3. The elevation of MYC mRNA, dsRNA accumulation, and EIF4A3 nuclear aggregates in FSHD muscle cells suggest that these processes might contribute to FSHD pathophysiology.


Assuntos
Apoptose , Proteínas de Homeodomínio/genética , Distrofia Muscular Facioescapuloumeral/genética , Distrofia Muscular Facioescapuloumeral/patologia , Proteínas Proto-Oncogênicas c-myc/genética , RNA de Cadeia Dupla/genética , Rabdomiossarcoma/genética , Caspases/metabolismo , Morte Celular , Linhagem Celular , Sobrevivência Celular , RNA Helicases DEAD-box/genética , Fator de Iniciação 4A em Eucariotos/genética , Éxons , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Mutação , Mioblastos/metabolismo , RNA de Cadeia Dupla/metabolismo , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/genética
15.
Clin Epigenetics ; 8: 111, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27795744

RESUMO

BACKGROUND: The risk of developing Barrett's esophagus (BE) and/or esophageal adenocarcinoma (EAC) is associated with specific demographic and behavioral factors, including gender, obesity/elevated body mass index (BMI), and tobacco use. Alterations in DNA methylation, an epigenetic modification that can affect gene expression and that can be influenced by environmental factors, is frequently present in both BE and EAC and is believed to play a role in the formation of BE and its progression to EAC. It is currently unknown whether obesity or tobacco smoking influences the risk of developing BE/EAC via the induction of alterations in DNA methylation. To investigate this possibility, we assessed the genome-wide methylation status of 81 esophageal tissues, including BE, dysplastic BE, and EAC epithelia using HumanMethylation450 BeadChips (Illumina). RESULTS: We found numerous differentially methylated loci in the esophagus tissues when comparing males to females, obese to lean individuals, and smokers to nonsmokers. Differences in DNA methylation between these groups were seen in a variety of functional genomic regions and both within and outside of CpG islands. Several cancer-related pathways were found to have differentially methylated genes between these comparison groups. CONCLUSIONS: Our findings suggest obesity and tobacco smoking may influence DNA methylation in the esophagus and raise the possibility that these risk factors affect the development of BE, dysplastic BE, and EAC through influencing the epigenetic status of specific loci that have a biologically plausible role in cancer formation.


Assuntos
Adenocarcinoma/genética , Esôfago de Barrett/genética , Metilação de DNA , Neoplasias Esofágicas/genética , Obesidade/complicações , Uso de Tabaco/efeitos adversos , Índice de Massa Corporal , Epigênese Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Obesidade/epidemiologia , Fatores de Risco , Fatores Sexuais
16.
PLoS Comput Biol ; 12(5): e1004919, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27168458

RESUMO

Biomarkers that drift differentially with age between normal and premalignant tissues, such as Barrett's esophagus (BE), have the potential to improve the assessment of a patient's cancer risk by providing quantitative information about how long a patient has lived with the precursor (i.e., dwell time). In the case of BE, which is a metaplastic precursor to esophageal adenocarcinoma (EAC), such biomarkers would be particularly useful because EAC risk may change with BE dwell time and it is generally not known how long a patient has lived with BE when a patient is first diagnosed with this condition. In this study we first describe a statistical analysis of DNA methylation data (both cross-sectional and longitudinal) derived from tissue samples from 50 BE patients to identify and validate a set of 67 CpG dinucleotides in 51 CpG islands that undergo age-related methylomic drift. Next, we describe how this information can be used to estimate a patient's BE dwell time. We introduce a Bayesian model that incorporates longitudinal methylomic drift rates, patient age, and methylation data from individually paired BE and normal squamous tissue samples to estimate patient-specific BE onset times. Our application of the model to 30 sporadic BE patients' methylomic profiles first exposes a wide heterogeneity in patient-specific BE onset times. Furthermore, independent application of this method to a cohort of 22 familial BE (FBE) patients reveals significantly earlier mean BE onset times. Our analysis supports the conjecture that differential methylomic drift occurs in BE (relative to normal squamous tissue) and hence allows quantitative estimation of the time that a BE patient has lived with BE.


Assuntos
Esôfago de Barrett/genética , Adenocarcinoma/etiologia , Adenocarcinoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/genética , Esôfago de Barrett/etiologia , Teorema de Bayes , Relógios Biológicos/genética , Biologia Computacional , Ilhas de CpG , Metilação de DNA , Progressão da Doença , Neoplasias Esofágicas/etiologia , Neoplasias Esofágicas/genética , Feminino , Marcadores Genéticos , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Fatores de Risco
17.
Cancer ; 122(14): 2168-77, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27142338

RESUMO

BACKGROUND: DNA methylation has been hypothesized as a mechanism for explaining the association between smoking and adverse prostate cancer (PCa) outcomes. This study was aimed at assessing whether smoking is associated with prostate tumor DNA methylation and whether these alterations may explain in part the association of smoking with PCa recurrence and mortality. METHODS: A total of 523 men had radical prostatectomy as their primary treatment, detailed smoking history data, long-term follow-up for PCa outcomes, and tumor tissue profiled for DNA methylation. Ninety percent of the men also had matched tumor gene expression data. A methylome-wide analysis was conducted to identify differentially methylated regions (DMRs) by smoking status. To select potential functionally relevant DMRs, their correlation with the messenger RNA (mRNA) expression of corresponding genes was evaluated. Finally, a smoking-related methylation score based on the top-ranked DMRs was created to assess its association with PCa outcomes. RESULTS: Forty DMRs were associated with smoking status, and 10 of these were strongly correlated with mRNA expression (aldehyde oxidase 1 [AOX1], claudin 5 [CLDN5], early B-cell factor 1 [EBF1], homeobox A7 [HOXA7], lectin galactoside-binding soluble 3 [LGALS3], microtubule-associated protein τ [MAPT], protocadherin γ A [PCDHGA]/protocadherin γ B [PCDHGB], paraoxonase 3 [PON3], synaptonemal complex protein 2 like [SYCP2L], and zinc finger and SCAN domain containing 12 [ZSCAN12]). Men who were in the highest tertile for the smoking-methylation score derived from these DMRs had a higher risk of recurrence (odds ratio [OR], 2.29; 95% confidence interval [CI], 1.42-3.72) and lethal disease (OR, 4.21; 95% CI, 1.65-11.78) in comparison with men in the lower 2 tertiles. CONCLUSIONS: This integrative molecular epidemiology study supports the hypothesis that smoking-associated tumor DNA methylation changes may explain at least part of the association between smoking and adverse PCa outcomes. Future studies are warranted to confirm these findings and understand the implications for improving patient outcomes. Cancer 2016;122:2168-77. © 2016 American Cancer Society.


Assuntos
Metilação de DNA , Neoplasias da Próstata/etiologia , Neoplasias da Próstata/mortalidade , Fumar , Adulto , Idoso , Ilhas de CpG , Epigênese Genética , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mortalidade , Gradação de Tumores , Recidiva Local de Neoplasia , Razão de Chances , Avaliação de Resultados da Assistência ao Paciente , Prognóstico , Prostatectomia , Neoplasias da Próstata/epidemiologia , Neoplasias da Próstata/cirurgia , Fumar/efeitos adversos
18.
Cancer Epidemiol Biomarkers Prev ; 24(12): 1890-7, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26545406

RESUMO

BACKGROUND: Barrett's esophagus (BE) is a preneoplastic condition in which normal esophageal squamous epithelium (SQ) is replaced by specialized intestinal metaplasia. It is the presumed precursor for esophageal adenocarcinoma (EAC) as well as the strongest risk factor for this cancer. Unfortunately, many patients with BE go undiagnosed under the current BE screening guidelines. The development of noninvasive and accurate BE detection assays could potentially identify many of these undiagnosed BE patients. METHODS: DNA methylation is a common epigenetic alteration in BE. Therefore, we conducted a genome-wide methylation screen to identify potential BE biomarkers. Samples from SQ (N = 12), stomach (N = 28), and BE (N = 29) were analyzed and methylation levels at over 485,000 CpG sites were compared. Pyrosequencing assays were used to validate the results and MethyLight assays were developed to detect the methylated alleles in endoscopic brushings. RESULTS: We discovered two genes, B3GAT2 and ZNF793, that are aberrantly methylated in BE. Clinical validation studies confirmed B3GAT2 and ZNF793 methylation levels were significantly higher in BE samples (median = 32.5% and 33.1%, respectively) than in control tissues (median = 2.29% and 2.52%, respectively; P < 0.0001 for both genes). Furthermore, gene-specific MethyLight assays could accurately detect BE (P < 0.0001 for both) in endoscopic brushing samples. CONCLUSION: B3GAT2 and ZNF793 are hypermethylated in BE, and the methylation status of these genes can be used to detect BE in tissue samples. IMPACT: These findings support the development of methylated B3GAT2 and ZNF793 as biomarkers for noninvasive assays for the detection of BE.


Assuntos
Esôfago de Barrett/genética , Biomarcadores Tumorais/genética , Metilação de DNA , Glucuronosiltransferase/genética , Dedos de Zinco/genética , Esôfago de Barrett/patologia , Humanos
19.
Prostate ; 75(16): 1941-50, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26383847

RESUMO

BACKGROUND: Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites. METHODS: The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed. RESULTS: In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings. CONCLUSIONS: This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets.


Assuntos
Metilação de DNA , Epigênese Genética , Regulação Neoplásica da Expressão Gênica , Próstata/metabolismo , Neoplasias da Próstata/genética , Ilhas de CpG , Epigenômica , Humanos , Masculino , Pessoa de Meia-Idade , Regiões Promotoras Genéticas , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia
20.
Gastroenterology ; 147(2): 418-29.e8, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24793120

RESUMO

BACKGROUND & AIMS: Genetic and epigenetic alterations contribute to the pathogenesis of colorectal cancer (CRC). There is considerable molecular heterogeneity among colorectal tumors, which appears to arise as polyps progress to cancer. This heterogeneity results in different pathways to tumorigenesis. Although epigenetic and genetic alterations have been detected in conventional tubular adenomas, little is known about how these affect progression to CRC. We compared methylomes of normal colon mucosa, tubular adenomas, and colorectal cancers to determine how epigenetic alterations might contribute to cancer formation. METHODS: We conducted genome-wide array-based studies and comprehensive data analyses of aberrantly methylated loci in 41 normal colon tissue, 42 colon adenomas, and 64 cancers using HumanMethylation450 arrays. RESULTS: We found genome-wide alterations in DNA methylation in the nontumor colon mucosa and cancers. Three classes of cancers and 2 classes of adenomas were identified based on their DNA methylation patterns. The adenomas separated into classes of high-frequency methylation and low-frequency methylation. Within the high-frequency methylation adenoma class a subset of adenomas had mutant KRAS. Additionally, the high-frequency methylation adenoma class had DNA methylation signatures similar to those of cancers with low or intermediate levels of methylation, and the low-frequency methylation adenoma class had methylation signatures similar to that of nontumor colon tissue. The CpG sites that were differentially methylated in these signatures are located in intragenic and intergenic regions. CONCLUSIONS: Genome-wide alterations in DNA methylation occur during early stages of progression of tubular adenomas to cancer. These findings reveal heterogeneity in the pathogenesis of colorectal cancer, even at the adenoma step of the process.


Assuntos
Adenoma/genética , Transformação Celular Neoplásica/genética , Neoplasias Colorretais/genética , Metilação de DNA , Epigênese Genética , Adenoma/patologia , Idoso , Estudos de Casos e Controles , Transformação Celular Neoplásica/patologia , Análise por Conglomerados , Neoplasias Colorretais/patologia , Ilhas de CpG , Análise Mutacional de DNA , Progressão da Doença , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Mutação , Análise de Sequência com Séries de Oligonucleotídeos , Fenótipo , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas p21(ras) , Proteínas ras/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...