Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hong Kong Physiother J ; 41(1): 45-53, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34054256

RESUMO

BACKGROUND/OBJECTIVE: To date, a validated Chinese (Mandarin) six-minute walk test (6MWT) translated instruction is not available. Translation of the Chinese 6MWT instruction is done in an ad hoc manner within the Chinese-speaking populations. This study aimed to develop a set of valid and reliable Chinese (Mandarin) instructions of the 6MWT. METHODS: Translation was performed from the original English instruction via the recommended "Process of translation and adaptation of instruments" by the World Health Organization to generate the Chinese instructions. The Chinese instructions were tested with 52 healthy adult participants for its validity. Each participant underwent three 6MWTs and a cardiopulmonary exercise test. Randomization allowed participants to undergo the walk test in both the original English and the new Chinese instructions. Face and content validity, intra-rater and inter-rater reliability of the Chinese instructions of the 6MWT were established through the translation process. Criterion validity was established by analyzing the results of the 6MWT and cardiopulmonary exercise test. RESULTS: Intraclass correlation coefficient for inter-rater reliability was excellent ( ICC = 0 . 999 , 95% confidence interval = 0 . 996 -1.000). Similarly, the intra-rater reliability across the three raters was high (R1: ICC = 0 . 996 , 95% confidence interval ( CI )= 0 . 812 -1.000; R2: ICC = 1 . 000 , 95% CI = 0 . 994 -1.000; R3: ICC = 1 . 000 , 95% CI = 0 . 998 -1.000). The 6-min walk distances collected from the Chinese and English instructed trials correlated positively with the maximal oxygen consumption ( r = 0 . 315 , p = 0 . 023 ; r = 0 . 309 , p = 0 . 026 ). CONCLUSION: This is the first study to develop and validate the Chinese (Mandarin) instructions of the 6MWT, and the translation is as reliable and valid as the original English instructions.

2.
J Phys Chem B ; 120(44): 11523-11538, 2016 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-27726398

RESUMO

The effects of water concentration and varying alkyl chain length on the dynamics of water in 1-alkyl-3-methylimidazolium tetrafluoroborate room-temperature ionic liquids (RTILs) were characterized using two-dimensional infrared (2D IR) vibrational echo spectroscopy and polarization-selective IR pump-probe experiments to study the water hydroxyl (OD) stretching mode of dilute HOD in H2O. Three imidazolium cation alkyl chain lengths, ethyl (Emim+), butyl (Bmim+), and decyl (Dmim+), were investigated. Both Bmim+ and Dmim+ cations have sufficiently long chains that the liquids exhibit polar-apolar segregation, whereas the Emim+ IL has no significant apolar aggregation. Although the OD absorption spectra are independent of the chain length, the measured reorientation and spectral diffusion dynamics are chain length dependent and tend to slow when the alkyl chain is long enough for polar-apolar segregation. As the water concentration is increased, a water-associated water population forms, absorbing in a new spectral region red-shifted from the isolated, anion-associated, water population. Furthermore, the anion-associated water dynamics are accelerated. At sufficiently high water concentrations, water in all of the RTILs experiences similar dynamics, the solvent structures having been fluidized by the addition of water. The water concentration at which the dilute water dynamics changes to fluidized dynamics depends on the alkyl chain length, which determines the extent and ordering of the apolar regions. Increases in both water concentration and alkyl chain length serve to modify the ordering of the RTIL, but with opposite and competing effects on the dissolved water dynamics.

3.
J Phys Chem B ; 117(2): 623-35, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23276306

RESUMO

The vibrational dynamics of the antisymmetric and symmetric stretching modes of very low concentration spatially isolated D(2)O molecules in the room temperature ionic liquid (RTIL) 1-butyl-3-methylimidazolium hexafluorophosphate (BmImPF(6)) were examined using two-dimensional infrared (2D IR) vibrational echo spectroscopy and infrared pump-probe experiments. In BmImPF(6), D(2)O's antisymmetric and symmetric stretching modes are well resolved in the IR absorption spectrum in spite of the fact that the D(2)O is surrounded by a sea of ions, making it is possible to study inter- and intramolecular dynamics. Both population exchange between the modes and excited-state relaxation to the ground state contribute to the population dynamics. The kinetics for the incoherent population exchange (scattering) between the two modes was determined by the time dependence of the exchange peaks in the 2D IR spectrum. In addition, coherent quantum beats were observed at short time in both the amplitudes and 2D IR band shapes of the modes. The quantum beat decay is caused by dephasing due to both inhomogeneous and homogeneous broadening of the spectral lines. Analysis of the oscillations of the 2D line shapes demonstrates that there is some degree of anticorrelation in the inhomogeneous broadening of the two modes. It is proposed that a distribution in the coupling strength between the local modes that give rise to symmetric and antisymmetric eigenstates is responsible for the anticorrelation. Spectral diffusion, caused by structural evolution of the medium, occurs on multiple time scales and is identical for the two modes within experimental error. The spectral diffusion is fast compared to the time scale for complete orientational randomization of the RTIL. Spectral diffusion of the OD stretch of HOD in BmImPF(6) was also measured, and is essentially the same as that of the D(2)O modes. Orientational anisotropy measurements of HOD in BmImPF(6) determined the orientational relaxation dynamics of the isolated HOD molecules.


Assuntos
Líquidos Iônicos/química , Água/química , Óxido de Deutério/química , Imidazóis/química , Íons/química , Espectrofotometria Infravermelho , Temperatura , Vibração
4.
J Phys Chem B ; 116(46): 13781-92, 2012 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-23113682

RESUMO

Water hydrogen bond dynamics in concentrated salt solutions are studied using polarization-selective IR pump-probe spectroscopy and 2D IR vibrational echo spectroscopy performed on the OD hydroxyl stretching mode of dilute HOD in H(2)O/salt solutions. The OD stretch is studied to eliminate vibrational excitation transfer, which interferes with the dynamical measurements. Though previous research suggested that only the anion affected dynamics in solution, here it is shown that the cation plays a role as well. From FT-IR spectra of the OD stretch, it is seen that replacing either ion of the salt pair causes a shift in absorption frequency relative to that of the OD stretch absorption in bulk pure water. This shift becomes pronounced with larger, more polarizable anions or smaller, high charge-density cations. The vibrational lifetime of the OD hydroxyl stretch in these solutions is a local property and is primarily dependent on the nature of the anion and whether the OD is hydrogen bonded to the anion or to the oxygen of another water molecule. However, the cation still has a small effect. Time dependent anisotropy measurements show that reorientation dynamics in these concentrated solutions is a highly concerted process. While the lifetime, a local probe, displays an ion-associated and a bulk-like component in concentrated solutions, the orientational relaxation does not have two subensemble dynamics, as demonstrated by the lack of a wavelength dependence. The orientational relaxation of the single ensemble is dependent on the identity of both the cation and anion. The 2D IR vibrational echo experiments measure spectral diffusion that is caused by structural evolution of the system. The vibrational echo measurements yield the frequency-frequency correlation function (FFCF). The results also show that the structural dynamics are dependent on the cation as well as the anion.

5.
J Phys Chem B ; 116(18): 5479-90, 2012 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-22510039

RESUMO

The dynamics of dimethyl sulfoxide (DMSO)/water solutions with a wide range of water concentrations are studied using polarization selective infrared pump-probe experiments, two-dimensional infrared (2D IR) vibrational echo spectroscopy, optical heterodyne detected optical Kerr effect (OHD-OKE) experiments, and IR absorption spectroscopy. Vibrational population relaxation of the OD stretch of dilute HOD in H(2)O displays two vibrational lifetimes even at very low water concentrations that are associated with water-water and water-DMSO hydrogen bonds. The IR absorption spectra also show characteristics of both water-DMSO and water-water hydrogen bonding. Although two populations are observed, water anisotropy decays (orientational relaxation) exhibit single ensemble behavior, indicative of concerted reorientation involving water and DMSO molecules. OHD-OKE experiments, which measure the orientational relaxation of DMSO, reveal that the DMSO orientational relaxation times are the same as orientational relaxation times found for water over a wide range of water concentrations within experimental error. The fact that the reorientation times of water and DMSO are basically the same shows that the reorientation of water is coupled to the reorientation of DMSO itself. These observations are discussed in terms of a jump reorientation model. Frequency-frequency correlation functions determined from the 2D IR experiments on the OD stretch show both fast and slow spectral diffusion. In analogy to bulk water, the fast component is assigned to very local hydrogen bond fluctuations. The slow component, which is similar to the slow water reorientation time at each water concentration, is associated with global hydrogen bond structural randomization.

6.
J Phys Chem B ; 115(40): 11658-70, 2011 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-21899355

RESUMO

Water dynamics inside of reverse micelles made from the surfactant Aerosol-OT (AOT) were investigated by observing spectral diffusion, orientational relaxation, and population relaxation using two-dimensional infrared (2D IR) vibrational echo spectroscopy and pump-probe experiments. The water pool sizes of the reverse micelles studied ranged in size from 5.8 to 1.7 nm in diameter. It is found that spectral diffusion, characterized by the frequency-frequency correlation function (FFCF), significantly changes as the water pool size decreases. For the larger reverse micelles (diameter 4.6 nm and larger), the 2D IR signal is composed of two spectral components: a signal from bulk-like core water, and a signal from water at the headgroup interface. Each of these signals (core water and interfacial water) is associated with a distinct FFCF. The FFCF of the interfacial water layer can be obtained using a modified center line slope (CLS) method that has been recently developed. The interfacial FFCFs for large reverse micelles have a single exponential decay (∼1.6 ps) to an offset plus a fast homogeneous component and are nearly identical for all large sizes. The observed ∼1.6 ps interfacial decay component is approximately the same as that found for bulk water and may reflect hydrogen bond rearrangement of bulk-like water molecules hydrogen bonded to the interfacial water molecules. The long time offset arises from dynamics that are too slow to be measured on the accessible experimental time scale. The influence of the chemical nature of the interface on spectral diffusion was explored by comparing data for water inside reverse micelles (5.8 nm water pool diameter) made from the surfactants AOT and Igepal CO-520. AOT has charged, sulfonate head groups, while Igepal CO-520 has neutral, hydroxyl head groups. It is found that spectral diffusion on the observable time scales is not overly sensitive to the chemical makeup of the interface. An intermediate-sized AOT reverse micelle (water pool diameter of 3.3 nm) is analyzed as a large reverse micelle because it has distinct core and interface regions, but its core region is more constrained than bulk water. The interfacial FFCF for this intermediate-sized reverse micelle is somewhat slower than those found for the larger reverse micelles. The water nanopools in the smaller reverse micelles cannot be separated into core and interface regions. In the small reverse micelles, the FFCFs are biexponential decays to an offset plus a fast homogeneous component. Each small reverse micelle exhibits an ∼1 ps decay time, which may arise from local hydrogen bond fluctuations and a slower, ∼6-10 ps decay, which is possibly due to slow hydrogen bond rearrangement of noninterfacial water molecules or topography fluctuations at the interface.


Assuntos
Micelas , Água/química , Difusão , Ácido Dioctil Sulfossuccínico/química , Ligação de Hidrogênio , Espectrofotometria Infravermelho , Vibração
7.
J Phys Chem B ; 115(38): 11294-304, 2011 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-21823631

RESUMO

Protein dynamics and interactions in myoglobin (Mb) were characterized via two vibrational dynamics labels (VDLs): a genetically incorporated site-specific azide (Az) bearing unnatural amino acid (AzPhe43) and an active site CO ligand. The Az-labeled protein was studied using ultrafast two-dimensional infrared (2D IR) vibrational echo spectroscopy. CO bound at the active site of the heme serves as a second VDL located nearby. Therefore, it was possible to use Fourier transform infrared (FT-IR) and 2D IR spectroscopic experiments on the Az in unligated Mb and in Mb bound to CO (MbAzCO) and on the CO in MbCO and MbAzCO to investigate the environment and motions of different states of one protein from the perspective of two spectrally resolved VDLs. A very broad bandwidth 2D IR spectrum, encompassing both the Az and CO spectral regions, found no evidence of direct coupling between the two VDLs. In MbAzCO, both VDLs reported similar time scale motions: very fast homogeneous dynamics, fast, ∼1 ps dynamics, and dynamics on a much slower time scale. Therefore, each VDL reports independently on the protein dynamics and interactions, and the measured dynamics are reflective of the protein motions rather than intrinsic to the chemical nature of the VDL. The AzPhe VDL also permitted study of oxidized Mb dynamics, which could not be accessed previously with 2D IR spectroscopy. The experiments demonstrate that the combined application of 2D IR spectroscopy and site-specific incorporation of VDLs can provide information on dynamics, structure, and interactions at virtually any site throughout any protein.


Assuntos
Aminoácidos/química , Simulação de Dinâmica Molecular , Mioglobina/química , Espectrofotometria Infravermelho/métodos , Substituição de Aminoácidos , Aminoácidos/genética , Azidas/química , Monóxido de Carbono/química , Heme/química , Ligantes , Mutação , Mioglobina/genética , Ligação Proteica , Conformação Proteica , Espectroscopia de Infravermelho com Transformada de Fourier , Vibração
8.
J Chem Phys ; 134(5): 054512, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21303143

RESUMO

Water dynamics as reflected by the spectral diffusion of the water hydroxyl stretch were measured in w(0) = 2 (1.7 nm diameter) Aerosol-OT (AOT)/water reverse micelles in carbon tetrachloride and in isooctane solvents using ultrafast 2D IR vibrational echo spectroscopy. Orientational relaxation and population relaxation are observed for w(0) = 2, 4, and 7.5 in both solvents using IR pump-probe measurements. It is found that the pump-probe observables are sensitive to w(0), but not to the solvent. However, initial analysis of the vibrational echo data from the water nanopool in the reverse micelles in the isooctane solvent seems to yield different dynamics than the CCl(4) system in spite of the fact that the spectra, vibrational lifetimes, and orientational relaxation are the same in the two systems. It is found that there are beat patterns in the interferograms with isooctane as the solvent. The beats are observed from a signal generated by the AOT/isooctane system even when there is no water in the system. A beat subtraction data processing procedure does a reasonable job of removing the distortions in the isooctane data, showing that the reverse micelle dynamics are the same within experimental error regardless of whether isooctane or carbon tetrachloride is used as the organic phase. Two time scales are observed in the vibrational echo data, ~1 and ~10 ps. The slower component contains a significant amount of the total inhomogeneous broadening. Physical arguments indicate that there is a much slower component of spectral diffusion that is too slow to observe within the experimental window, which is limited by the OD stretch vibrational lifetime.


Assuntos
Tetracloreto de Carbono/química , Ácido Dioctil Sulfossuccínico/química , Octanos/química , Água/química , Micelas , Solventes/química , Espectrofotometria Infravermelho/métodos , Tensoativos/química
9.
Proc Natl Acad Sci U S A ; 106(36): 15243-8, 2009 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-19706895

RESUMO

The orientational dynamics of water at a neutral surfactant reverse micelle interface are measured with ultrafast infrared spectroscopy of the hydroxyl stretch, and the results are compared to orientational relaxation of water interacting with an ionic interface. The comparison provides insights into the influence of a neutral vs. ionic interface on hydrogen bond dynamics. Measurements are made and analyzed for large nonionic surfactant Igepal CO-520reverse micelles (water nanopool with a 9-nm diameter). The results are compared with those from a previous study of reverse micelles of the same size formed with the ionic surfactant Aerosol-OT (AOT). The results demonstrate that the orientational relaxation times for interfacial water molecules in the two types of reverse micelles are very similar (13 ps for Igepal and 18 ps for AOT) and are significantly slower than that of bulk water (2.6 ps). The comparison of water orientational relaxation at neutral and ionic interfaces shows that the presence of an interface plays the dominant role in determining the hydrogen bond dynamics, whereas the chemical nature of the interface plays a secondary role.


Assuntos
Ligação de Hidrogênio , Micelas , Tensoativos/química , Água/química , Hidróxidos/química , Espectrofotometria Infravermelho
10.
J Chem Phys ; 131(1): 014704, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19586114

RESUMO

The dynamics of water in Aerosol-OT reverse micelles are investigated with ultrafast infrared spectroscopy of the hydroxyl stretch. In large reverse micelles, the dynamics of water are separable into two ensembles: slow interfacial water and bulklike core water. As the reverse micelle size decreases, the slowing effect of the interface and the collective nature of water reorientation begin to slow the dynamics of the core water molecules. In the smallest reverse micelles, these effects dominate and all water molecules have the same long time reorientational dynamics. To understand and characterize the transition in the water dynamics from two ensembles to collective reorientation, polarization and frequency selective infrared pump-probe experiments are conducted on the complete range of reverse micelle sizes from a diameter of 1.6-20 nm. The crossover between two ensemble and collective reorientation occurs near a reverse micelle diameter of 4 nm. Below this size, the small number of confined water molecules and structural changes in the reverse micelle interface leads to homogeneous long time reorientation.


Assuntos
Hidróxidos/química , Micelas , Água/química , Estrutura Molecular , Espectrofotometria Infravermelho
11.
J Phys Chem B ; 113(25): 8560-8, 2009 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-19485407

RESUMO

The orientational dynamics of water molecules at the interface in large Aerosol-OT (AOT) reverse micelles are investigated using ultrafast infrared spectroscopy of the OD stretch of dilute HOD in H(2)O. In large reverse micelles ( approximately 9 nm diameter or larger), a significant amount of the nanoscopic water is sufficiently distant from the interface that it displays bulk-like characteristics. However, some water molecules interact with the interface and have vibrational absorption spectra and dynamics distinct from bulk water. The different characteristics of these interfacial waters allow their contribution to the data to be separated from the bulk. The infrared absorption spectrum of the OD stretch is analyzed to show that the interfacial water molecules have a spectrum that peaks near 2565 cm(-1) in contrast to 2509 cm(-1) in bulk water. A two-component model is developed that simultaneously describes the population relaxation and orientational dynamics of the OD stretch in the spectral region of the interfacial water. The model provides a consistent description of both observables and demonstrates that water interacting with the interface has slower vibrational relaxation and orientational dynamics. The orientational relaxation of interfacial water molecules occurs in 18 +/- 3 ps, in contrast to the bulk water value of 2.6 ps.


Assuntos
Micelas , Água/química , Aerossóis , Anisotropia , Óxido de Deutério/química , Modelos Moleculares , Vibração
12.
J Am Chem Soc ; 131(23): 8318-28, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-19449867

RESUMO

To determine the relative importance of the confining geometry and nanoscopic length scale versus water/interface interactions, the dynamic interactions between water and interfaces are studied with ultrafast infrared spectroscopy. Aerosol OT (AOT) is a surfactant that can form two-dimensional lamellar structures with known water layer thickness as well as well-defined monodispersed spherical reverse micelles of known water nanopool diameter. Lamellar structures and reverse micelles are compared based on two criteria: surface-to-surface dimensions to study the effect of confining length scales, and water-to-surfactant ratio to study water/interface interactions. We show that the water-to-surfactant ratio is the dominant factor governing the nature of water interacting with an interface, not the characteristic nanoscopic distance. The detailed structure of the interface and the specific interactions between water and the interface also play a critical role in the fraction of water molecules influenced by the surface. A two-component model in which water is separated into bulk-like water in the center of the lamellar structure or reverse micelle and interfacial water is used to quantitatively extract the interfacial dynamics. A greater number of perturbed water molecules are present in the lamellar structures as compared to the reverse micelles due to the larger surface area per AOT molecule and the greater penetration of water molecules past the sulfonate head groups in the lamellar structures.


Assuntos
Ácido Dioctil Sulfossuccínico/química , Micelas , Nanoestruturas/química , Tensoativos/química , Água/química , Estrutura Molecular , Nanoestruturas/ultraestrutura
13.
Acc Chem Res ; 42(9): 1210-9, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19378969

RESUMO

Water is ubiquitous in nature, but it exists as pure water infrequently. From the ocean to biology, water molecules interact with a wide variety of dissolved species. Many of these species are charged. In the ocean, water interacts with dissolved salts. In biological systems, water interacts with dissolved salts as well as charged amino acids, the zwitterionic head groups of membranes, and other biological groups that carry charges. Water plays a central role in a vast number of chemical processes because of its dynamic hydrogen-bond network. A water molecule can form up to four hydrogen bonds in an approximately tetrahedral arrangement. These hydrogen bonds are continually being broken, and new bonds are being formed on a picosecond time scale. The ability of the hydrogen-bond network of water to rapidly reconfigure enables water to accommodate and facilitate chemical processes. Therefore, the influence of charged species on water hydrogen-bond dynamics is important. Recent advances in ultrafast coherent infrared spectroscopy have greatly expanded our understanding of water dynamics. Two-dimensional infrared (2D IR) vibrational echo spectroscopy is providing new observables that yield direct information on the fast dynamics of molecules in their ground electronic state under thermal equilibrium conditions. The 2D IR vibrational echoes are akin to 2D nuclear magnetic resonance (NMR) but operate on time scales that are many orders of magnitude shorter. In a 2D IR vibrational echo experiment (see the Conspectus figure), three IR pulses are tuned to the vibrational frequency of interest, which in this case is the frequency of the hydroxyl stretching mode of water. The first two pulses "label" the initial molecular structures by their vibrational frequencies. The system evolves between pulses two and three, and the third pulse stimulates the emission of the vibrational echo pulse, which is the signal. The vibrational echo pulse is heterodyne, detected by combining it with another pulse, the local oscillator. Heterodyne detection provides phase and amplitude information, which are both necessary to perform the two Fourier transforms that take the data from the time domain to a two-dimensional frequency domain spectrum. The time dependence of a series of 2D IR vibrational echo spectra provides direct information on system dynamics. Here, we use two types of 2D IR vibrational echo experiments to examine the influence that charged species have on water hydrogen-bond dynamics. Solutions of NaBr and NaBF(4) are studied. The NaBr solutions are studied as a function of the concentration using vibrational echo measurements of spectral diffusion and polarization-selective IR pump-probe measurements of orientational relaxation. Both types of measurements show the slowing of hydrogen-bond network structural evolution with an increasing salt concentration. NaBF(4) is studied using vibrational echo chemical-exchange spectroscopy. In these experiments, it is possible to directly observe the chemical exchange of water molecules switching their hydrogen-bond partners between BF(4)(-) and other water molecules. The results demonstrate that water interacting with ions has slower hydrogen-bond dynamics than pure water, but the slowing is a factor of 3 or 4 rather than orders of magnitude.


Assuntos
Sais/química , Vibração , Água/química , Anisotropia , Boranos/química , Brometos/química , Difusão , Ligação de Hidrogênio , Compostos de Sódio/química , Soluções , Espectrofotometria Infravermelho , Fatores de Tempo
14.
Proc Natl Acad Sci U S A ; 106(2): 375-80, 2009 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-19106293

RESUMO

The exchange of water hydroxyl hydrogen bonds between anions and water oxygens is observed directly with ultrafast 2D IR vibrational echo chemical exchange spectroscopy (CES). The OD hydroxyl stretch of dilute HOD in H(2)O in concentrated (5.5 M) aqueous solutions of sodium tetrafluoroborate (NaBF(4)) displays a spectrum with a broad water-like band (hydroxyl bound to water oxygen) and a resolved, blue shifted band (hydroxyl bound to BF(4)(-)). At short time (200 fs), the 2D IR vibrational echo spectrum has 4 peaks, 2 on the diagonal and 2 off-diagonal. The 2 diagonal peaks are the 0-1 transitions of the water-like band and the hydroxyl-anion band. Vibrational echo emissions at the 1-2 transition frequencies give rise to 2 off-diagonal peaks. On a picosecond time scale, additional off-diagonal peaks grow in. These new peaks arise from chemical exchange between water hydroxyls bound to anions and hydroxyls bound to water oxygens. The growth of the chemical exchange peaks yields the time dependence of anion-water hydroxyl hydrogen bond switching under thermal equilibrium conditions as T(aw) = 7 +/- 1 ps. Pump-probe measurements of the orientational relaxation rates and vibrational lifetimes are used in the CES data analysis. The pump-probe measurements are shown to have the correct functional form for a system undergoing exchange.


Assuntos
Medição da Troca de Deutério/métodos , Ligação de Hidrogênio , Íons/química , Espectrofotometria Infravermelho/métodos , Água/química , Medição da Troca de Deutério/instrumentação , Cinética , Soluções , Espectrofotometria Infravermelho/instrumentação
15.
Pain Physician ; 11(4): 555-9, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18690284

RESUMO

Spinal cord stimulation (SCS) has been a therapeutic option for chronic pain for over 40 years with a common indication being failed back surgery syndrome (FBSS). This case reports the successful implantation of a spinal cord stimulator in a patient with FBSS and kyphoscoliosis for treatment of radicular pain. Technical considerations and anatomical difficulties that may be encountered during placement with kyphoscoliosis will be discussed. This patient had failed other therapies including oral medications, epidural steroid injections, spinal surgeries, and physical and aquatic therapies. On physical examination the patient had a severely deformed lumbar spine. Careful review of the spine radiographs and CT scan revealed lead placement might be possible at the level of T12-L1 or L1-2. A Medline search did not reveal a case of kyphoscoliosis with radicular pain treated with SCS. After a successful percutaneous trial, a SCS was implanted. Fourteen weeks later, the patient reported being pain free with an increased physical activity level and opioid discontinuation. Technical considerations with kyphoscoliosis may discourage pain physicians from attempting SCS. This case illustrates that with careful selection, some of these patients may be candidates for SCS with good results.


Assuntos
Terapia por Estimulação Elétrica/métodos , Cifose/complicações , Radiculopatia/patologia , Radiculopatia/terapia , Medula Espinal/efeitos da radiação , Idoso , Feminino , Humanos , Vértebras Lombares/fisiopatologia , Vértebras Lombares/efeitos da radiação , Medição da Dor/métodos , Radiculopatia/etiologia , Medula Espinal/fisiopatologia
16.
ACS Nano ; 2(10): 2143-53, 2008 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-19206461

RESUMO

The influence of excitation wavelength and embedding media on fluorescence blinking statistics of 4 nm x 20 nm cadmium selenide (CdSe) nanorods is investigated. Photon antibunching (PAB) experiments confirm nonclassical emission from single CdSe nanorods that exhibit a radiative lifetime of 26 +/- 13 ns. The blinking data show behaviors that can be categorized into two classes: excitation near the energy of the band gap and at energies exceeding 240 meV above the band gap. Excitation at the band gap energy (lambda >or= 560 nm) results in more pronounced "on" time probabilities in the distribution of "on" and "off" events, while those resulting from excitation exceeding the band gap by 240 meV or more (lambda

Assuntos
Compostos de Cádmio/química , Cristalização/métodos , Medições Luminescentes/métodos , Modelos Químicos , Nanotecnologia/métodos , Nanotubos/química , Compostos de Selênio/química , Espectrometria de Fluorescência/métodos , Simulação por Computador , Nanotubos/ultraestrutura , Tamanho da Partícula
17.
Nano Lett ; 7(12): 3869-74, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17994781

RESUMO

Core/shell CdSe/ZnS quantum dot fluorescence-blinking statistics depend strongly on excitation wavelength. Excitation on the band gap (575 nm) results in inverse-power law "on" time distributions. However, distributions resulting from excitation above the band gap (525 nm) require a truncated power law and are 100 times less likely to display 10-s fluorescence. "Off" time statistics are insensitive to the excitation wavelength. The results may be explained by nonemissive trap states accessed with the higher-photon excitation energies.


Assuntos
Cádmio , Selênio , Enxofre , Zinco , Cinética , Teoria Quântica , Espectrofotometria
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...