Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Biomed Pharmacother ; 162: 114617, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37001180

RESUMO

Despite various therapeutic approaches, colorectal cancer is among the most fatal diseases globally. Hence, developing novel and more effective methods for colorectal cancer treatment is essential. Recently, reactive oxygen species (ROS)/JNK signaling pathway has been proposed as the potential target for the anticancer drug discovery. The present study investigated the anticancer effects of the bioactive xanthone garcinone E (GAR E) in mangosteen and explored its underlying mechanism of action. HT-29 and Caco-2 cancer cells were used as in vitro models to study the anticancer effect of GAR E. The findings demonstrated that GAR E inhibited colony formation and wound healing, whereas triggered the production of ROS, which induced mitochondrial dysfunction and apoptosis, causing cell cycle arrest at the Sub G1 phase. Additionally, GAR E treatment elevated the ratio of Bax/Bcl-2 and activated PARP, caspases 3 and 9, and JNK1/2. These GAR E-induced cytotoxic activities and expression of signaling proteins were reversed by the antioxidant N-acetyl-L-cysteine and JNK inhibitor SP600125, indicating the involvement of ROS/JNK signaling pathways. In vivo experiments using an HT-29 xenograft nude mouse model also demonstrated the antitumor effect of GAR E. In conclusion, our findings showed that GAR E might be potentially effective in treating colorectal cancer and provided insights into the development of xanthones as novel chemotherapeutic agents.


Assuntos
Neoplasias Colorretais , Sistema de Sinalização das MAP Quinases , Animais , Camundongos , Humanos , Espécies Reativas de Oxigênio/metabolismo , Células CACO-2 , Linhagem Celular Tumoral , Apoptose , Pontos de Checagem do Ciclo Celular , Neoplasias Colorretais/patologia
2.
Mol Biol Rep ; 49(11): 11201-11208, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36107375

RESUMO

BACKGROUND: Nucleoside transporters are crucial in regulating the functions of adenosine. This study investigated the contribution of equilibrative nucleoside transporter (ENT) type 4 to adenosine transport in cardiomyocytes under simulated ischemic conditions and whether the inhibition of ENT4 could protect cardiomyocytes against ischemia-reperfusion injury. METHODS: AC16 human cardiomyocytes were used to create a model to simulate ischemia/reperfusion injury. ENT4 activity was inhibited by decynium-22 or specific siRNA against ENT4. The protein expressions of nucleoside transporters were measured by western blot analysis. The transport activity was studied by [3?H]adenosine uptake. The cell injury was studied by biochemical assays. RESULTS: The [3?H]adenosine uptake in AC16 cells was predominantly mediated by ENTs. ENT1 to ENT4 were present in AC16 cells and their protein expression levels were comparable in normal and ischemic conditions. Decynium-22 or siRNA against ENT4 did not affect the adenosine uptake in AC16 cells under normal conditions but could inhibit the adenosine uptake in AC16 cells by 28% under ischemic conditions. In addition, the cell viability and lactate dehydrogenase release of AC16 cells under ischemia conditions could be reduced by decynium-22 or siRNA against ENT4. CONCLUSION: The cell culture model has suggested that ENT4 may play a role in adenosine transport in cardiomyocytes under ischemic conditions. Inhibition or downregulation of ENT4 may be a potential approach for cardioprotection but this notion should be further validated using animal model.


Assuntos
Miócitos Cardíacos , Traumatismo por Reperfusão , Animais , Humanos , Miócitos Cardíacos/metabolismo , Adenosina/metabolismo , Nucleosídeos/metabolismo , RNA Interferente Pequeno/metabolismo , Traumatismo por Reperfusão/metabolismo , Isquemia
3.
Nutrients ; 14(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35631193

RESUMO

The use of medication is effective in managing metabolic syndrome (MetS), but side effects have led to increased attention on using nutraceuticals and supplements. Astaxanthin shows positive effects in reducing the risk of MetS, but results from individual studies are inconclusive. This systematic review summarizes the latest evidence of astaxanthin in adults with risk factors of MetS. A systematic search of English and Chinese randomized controlled trials in 14 electronic databases from inception to 30 June 2021 was performed. Two reviewers independently screened the titles and abstracts, and conducted full-text review, quality appraisal, and extraction of data. Risk of bias was assessed by PEDro. A total of 7 studies met the inclusion criteria with 321 participants. Six studies were rated to have excellent methodological quality, while the remaining one was rated at good. Results show marginal effects of astaxanthin on reduction in total cholesterol and systolic blood pressure, and a significant attenuating effect on low-density lipoprotein cholesterol. Further robust evidence is needed to examine the effects of astaxanthin in adults at risk of MetS.


Assuntos
Síndrome Metabólica , Adulto , Colesterol , Humanos , Síndrome Metabólica/tratamento farmacológico , Síndrome Metabólica/prevenção & controle , Avaliação de Resultados em Cuidados de Saúde , Fatores de Risco , Xantofilas
4.
Eur J Pharmacol ; 905: 174190, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34015322

RESUMO

Narirutin is one of the most common flavanones found in citrus fruits. The vascular effects of its analogues naringenin and naringin have been reported but its effects on the cardiovascular system are largely unknown. In this study, relaxation effect of narirutin and its mechanisms of action were investigated by measuring isometric tension in rat mesenteric arteries. Patch-clamping was also used to study the effect of narirutin on potassium channels in vascular smooth muscle cells. Moreover, its effects on phosphorylation of endothelial nitric oxide synthase, cAMP level and phosphodiesterase activity in rat mesenteric arteries were studied by Western blot and biochemical assays. The results showed that pre-incubation of rat mesenteric arteries with narirutin had no influence on acetylcholine-induced endothelial-dependent relaxation. However, narirutin caused a direct concentration-dependent relaxation in rat mesenteric arteries. This relaxation effect was comparable to that of narirutin's structural analogue naringenin. Narirutin-induced relaxation was reduced by the removal of endothelium, NG-nitro-L-arginine methyl ester (a nitric oxide synthase inhibitor), and 4-aminopyridine (a voltage-gated potassium channel blocker). In addition, narirutin increased the phosphorylation of endothelial nitric oxide synthase and increased the voltage-dependent potassium current in mesenteric arterial smooth muscle cells. These effects were abolished by protein kinase A inhibitor. Furthermore, narirutin could increase cAMP level and inhibit phosphodiesterase activity in rat mesenteric arteries. In conclusion, narirutin has vasorelaxing effect and the mechanism involves the inhibition of phosphodiesterase, which increases intracellular cAMP, thereby stimulating the endothelial nitric oxide synthase and activating the voltage-gated potassium channels in vascular smooth muscle cells.


Assuntos
Dissacarídeos/farmacologia , Flavanonas/farmacologia , Artérias Mesentéricas/efeitos dos fármacos , Relaxamento Muscular/efeitos dos fármacos , Óxido Nítrico/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/agonistas , Vasodilatadores/farmacologia , Animais , AMP Cíclico/metabolismo , Endotélio Vascular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Masculino , Músculo Liso Vascular/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Bloqueadores dos Canais de Potássio/farmacologia , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...