Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 108
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38586038

RESUMO

Organ function declines with age, and large-scale transcriptomic analyses have highlighted differential aging trajectories across tissues. The mechanisms underlying shared and organ-selective functional changes across the lifespan, however, still remains poorly understood. Given the central role of mitochondria in powering cellular processes needed to maintain tissue health, we therefore undertook a systematic assessment of respiratory activity across 33 different tissues in young (2.5 months) and old (20 months) mice of both sexes. Our high-resolution mitochondrial respiration atlas reveals: 1) within any group of mice, mitochondrial activity varies widely across tissues, with the highest values consistently seen in heart, brown fat, and kidney; 2) biological sex is a significant but minor contributor to mitochondrial respiration, and its contributions are tissue-specific, with major differences seen in the pancreas, stomach, and white adipose tissue; 3) age is a dominant factor affecting mitochondrial activity, especially across different fat depots and skeletal muscle groups, and most brain regions; 4) age-effects can be sex- and tissue-specific, with some of the largest effects seen in pancreas, heart, adipose tissue, and skeletal muscle; and 5) while aging alters the functional trajectories of mitochondria in a majority of tissues, some are remarkably resilient to age-induced changes. Altogether, our data provide the most comprehensive compendium of mitochondrial respiration and illuminate functional signatures of aging across diverse tissues and organ systems.

2.
Diabetes ; 73(5): 806-818, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38387059

RESUMO

Type 1 diabetes (T1D) is an autoimmune disease in which pathogenic lymphocytes target autoantigens expressed in pancreatic islets, leading to the destruction of insulin-producing ß-cells. Zinc transporter 8 (ZnT8) is a major autoantigen abundantly present on the ß-cell surface. This unique molecular target offers the potential to shield ß-cells against autoimmune attacks in T1D. Our previous work showed that a monoclonal antibody (mAb43) against cell-surface ZnT8 could home in on pancreatic islets and prevent autoantibodies from recognizing ß-cells. This study demonstrates that mAb43 binds to exocytotic sites on the ß-cell surface, masking the antigenic exposure of ZnT8 and insulin after glucose-stimulated insulin secretion. In vivo administration of mAb43 to NOD mice selectively increased the proportion of regulatory T cells in the islet, resulting in complete and sustained protection against T1D onset as well as reversal of new-onset diabetes. The mAb43-induced self-tolerance was reversible after treatment cessation, and no adverse effects were exhibited during long-term monitoring. Our findings suggest that mAb43 masking of the antigenic exposure of ß-cells suppresses the immunological cascade from B-cell antigen presentation to T cell-mediated ß-cell destruction, providing a novel islet-targeted and antigen-specific immunotherapy to prevent and reverse clinical T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Ilhotas Pancreáticas , Camundongos , Animais , Diabetes Mellitus Tipo 1/metabolismo , Camundongos Endogâmicos NOD , Ilhotas Pancreáticas/metabolismo , Autoantígenos , Insulina
3.
Elife ; 122024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241182

RESUMO

Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first 2 weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted growth hormone (GH)/insulin-like growth factor 1 (IGF-1) axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.


Assuntos
Nanismo , Hormônio do Crescimento , Animais , Feminino , Humanos , Masculino , Camundongos , Nanismo/genética , Estudo de Associação Genômica Ampla , Hormônio do Crescimento/genética , Hormônio do Crescimento/metabolismo , Fator de Crescimento Insulin-Like I/genética , Fator de Crescimento Insulin-Like I/metabolismo , Camundongos Knockout , Receptores da Somatotropina/genética , Receptores da Somatotropina/metabolismo , Proteínas de Membrana/genética
4.
J Biol Chem ; 300(1): 105566, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103643

RESUMO

Macrophages play critical roles in inflammation and tissue homeostasis, and their functions are regulated by various autocrine, paracrine, and endocrine factors. We have previously shown that CTRP6, a secreted protein of the C1q family, targets both adipocytes and macrophages to promote obesity-linked inflammation. However, the gene programs and signaling pathways directly regulated by CTRP6 in macrophages remain unknown. Here, we combine transcriptomic and phosphoproteomic analyses to show that CTRP6 activates inflammatory gene programs and signaling pathways in mouse bone marrow-derived macrophages (BMDMs). Treatment of BMDMs with CTRP6 upregulated proinflammatory, and suppressed the antiinflammatory, gene expression. We also showed that CTRP6 activates p44/42-MAPK, p38-MAPK, and NF-κB signaling pathways to promote inflammatory cytokine secretion from BMDMs, and that pharmacologic inhibition of these signaling pathways markedly attenuated the effects of CTRP6. Pretreatment of BMDMs with CTRP6 also sensitized and potentiated the BMDMs response to lipopolysaccharide (LPS)-induced inflammatory signaling and cytokine secretion. Consistent with the metabolic phenotype of proinflammatory macrophages, CTRP6 treatment induced a shift toward aerobic glycolysis and lactate production, reduced oxidative metabolism, and elevated mitochondrial reactive oxygen species production in BMDMs. Importantly, in accordance with our in vitro findings, BMDMs from CTRP6-deficient mice were less inflammatory at baseline and showed a marked suppression of LPS-induced inflammatory gene expression and cytokine secretion. Finally, loss of CTRP6 in mice also dampened LPS-induced inflammation and hypothermia. Collectively, our findings suggest that CTRP6 regulates and primes the macrophage response to inflammatory stimuli and thus may have a role in modulating tissue inflammatory tone in different physiological and disease contexts.


Assuntos
Adipocinas , Perfilação da Expressão Gênica , Inflamação , Lipopolissacarídeos , Macrófagos , Fosfoproteínas , Proteômica , Animais , Camundongos , Adipocinas/deficiência , Adipocinas/genética , Adipocinas/metabolismo , Células da Medula Óssea/citologia , Citocinas/metabolismo , Glicólise , Hipotermia/complicações , Inflamação/complicações , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Ácido Láctico/biossíntese , Lipopolissacarídeos/imunologia , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , NF-kappa B/metabolismo , Fosfoproteínas/análise , Fosfoproteínas/metabolismo , Transdução de Sinais , Espécies Reativas de Oxigênio/metabolismo
5.
bioRxiv ; 2023 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-37961647

RESUMO

Obesity is a major risk factor for type 2 diabetes, dyslipidemia, cardiovascular disease, and hypertension. Intriguingly, there is a subset of metabolically healthy obese (MHO) individuals who are seemingly able to maintain a healthy metabolic profile free of metabolic syndrome. The molecular underpinnings of MHO, however, are not well understood. Here, we report that CTRP10/C1QL2-deficient mice represent a unique female model of MHO. CTRP10 modulates weight gain in a striking and sexually dimorphic manner. Female, but not male, mice lacking CTRP10 develop obesity with age on a low-fat diet while maintaining an otherwise healthy metabolic profile. When fed an obesogenic diet, female Ctrp10 knockout (KO) mice show rapid weight gain. Despite pronounced obesity, Ctrp10 KO female mice do not develop steatosis, dyslipidemia, glucose intolerance, insulin resistance, oxidative stress, or low-grade inflammation. Obesity is largely uncoupled from metabolic dysregulation in female KO mice. Multi-tissue transcriptomic analyses highlighted gene expression changes and pathways associated with insulin-sensitive obesity. Transcriptional correlation of the differentially expressed gene (DEG) orthologous in humans also show sex differences in gene connectivity within and across metabolic tissues, underscoring the conserved sex-dependent function of CTRP10. Collectively, our findings suggest that CTRP10 negatively regulates body weight in females, and that loss of CTRP10 results in benign obesity with largely preserved insulin sensitivity and metabolic health. This female MHO mouse model is valuable for understanding sex-biased mechanisms that uncouple obesity from metabolic dysfunction.

6.
Mol Metab ; 78: 101824, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37844630

RESUMO

OBJECTIVE: Tissue crosstalk mediated by secreted hormones underlies the integrative control of metabolism. We previously showed that CTRP13/C1QL3, a secreted protein of the C1q family, can improve glucose metabolism and insulin action in vitro and reduce food intake and body weight in mice when centrally delivered. A role for CTRP13 in regulating insulin secretion in isolated islets has also been demonstrated. It remains unclear, however, whether the effects of CTRP13 on cultured cells and in mice reflect the physiological function of the protein. Here, we use a loss-of-function mouse model to address whether CTRP13 is required for metabolic homeostasis. METHODS: WT and Ctrp13 knockout (KO) mice fed a standard chow or a high-fat diet were subjected to comprehensive metabolic phenotyping. Transcriptomic analyses were carried out on visceral and subcutaneous fat, liver, and skeletal muscle to identify pathways altered by CTRP13 deficiency. RNA-seq data was further integrated with the Metabolic Syndrome in Man (METSIM) cohort data. Adjusted regression analysis was used to demonstrate that genetic variation of CTRP13 expression accounts for a significant proportion of variance between differentially expressed genes (DEGs) in adipose tissue and metabolic traits in humans. RESULTS: Contrary to expectation, chow-fed Ctrp13-KO male mice had elevated physical activity, lower body weight, and improved lipid handling. On a high-fat diet (HFD), Ctrp13-KO mice of either sex were consistently more active and leaner. Loss of CTRP13 reduced hepatic glucose output and improved glucose tolerance, insulin sensitivity, and triglyceride clearance, though with notable sex differences. Consistent with the lean phenotype, transcriptomic analyses revealed a lower inflammatory profile in visceral fat and liver. Reduced hepatic steatosis was correlated with the suppression of lipid synthesis and enhanced lipid catabolism gene expression. Visceral fat had the largest number of DEGs and mediation analyses on the human orthologs of the DEGs suggested the potential causal contribution of CTRP13 to human metabolic syndrome. CONCLUSIONS: Our results suggest that CTRP13 is a negative metabolic regulator, and its deficiency improves systemic metabolic profiles. Our data also suggest the reduction in circulating human CTRP13 levels seen in obesity and diabetes may reflect a compensatory physiologic response to counteract insulin resistance.


Assuntos
Resistência à Insulina , Síndrome Metabólica , Animais , Feminino , Humanos , Masculino , Camundongos , Adipocinas/metabolismo , Peso Corporal/genética , Glucose/metabolismo , Resistência à Insulina/fisiologia , Metabolismo dos Lipídeos/genética , Lipídeos
7.
Front Endocrinol (Lausanne) ; 14: 1237796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732123

RESUMO

Metabolic syndrome (MetS), a cluster of metabolic conditions that include obesity, hyperlipidemia, and insulin resistance, increases the risk of several aging-related brain diseases, including Alzheimer's disease (AD). However, the underlying mechanism explaining the link between MetS and brain function is poorly understood. Among the possible mediators are several adipose-derived secreted molecules called adipokines, including adiponectin (ApN) and resistin, which have been shown to regulate brain function by modulating several metabolic processes. To investigate the impact of adipokines on MetS, we employed a diet-induced model to induce the various complications associated with MetS. For this purpose, we administered a high-fat diet (HFD) to both WT and APP/PSN1 mice at a pre-symptomatic disease stage. Our data showed that MetS causes a fast decline in cognitive performance and stimulates Aß42 production in the brain. Interestingly, ApN treatment restored glucose metabolism and improved cognitive functions by 50% while decreasing the Aß42/40 ratio by approximately 65%. In contrast, resistin exacerbated Aß pathology, increased oxidative stress, and strongly reduced glucose metabolism. Together, our data demonstrate that ApN and resistin alterations could further contribute to AD pathology.


Assuntos
Doença de Alzheimer , Síndrome Metabólica , Animais , Camundongos , Adiponectina , Resistina , Doença de Alzheimer/etiologia , Adipocinas , Obesidade , Glucose
8.
bioRxiv ; 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37577461

RESUMO

Genome-wide association studies (GWAS) have identified a large number of candidate genes believed to affect longitudinal bone growth and bone mass. One of these candidate genes, TMEM263, encodes a poorly characterized plasma membrane protein. Single nucleotide polymorphisms in TMEM263 are associated with bone mineral density in humans and mutations are associated with dwarfism in chicken and severe skeletal dysplasia in at least one human fetus. Whether this genotype-phenotype relationship is causal, however, remains unclear. Here, we determine whether and how TMEM263 is required for postnatal growth. Deletion of the Tmem263 gene in mice causes severe postnatal growth failure, proportional dwarfism, and impaired skeletal acquisition. Mice lacking Tmem263 show no differences in body weight within the first two weeks of postnatal life. However, by P21 there is a dramatic growth deficit due to a disrupted GH/IGF-1 axis, which is critical for longitudinal bone growth. Tmem263-null mice have low circulating IGF-1 levels and pronounced reductions in bone mass and growth plate length. The low serum IGF-1 in Tmem263-null mice is associated with reduced hepatic GH receptor (GHR) expression and GH-induced JAK2/STAT5 signaling. A deficit in GH signaling dramatically alters GH-regulated genes and feminizes the liver transcriptome of Tmem263-null male mice, with their expression profile resembling a wild-type female, hypophysectomized male, and Stat5b-null male mice. Collectively, our data validates the causal role for Tmem263 in regulating postnatal growth and raises the possibility that rare mutations or variants of TMEM263 may potentially cause GH insensitivity and impair linear growth.

9.
Genome Res ; 33(5): 703-714, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37156619

RESUMO

Hummingbirds are very well adapted to sustain efficient and rapid metabolic shifts. They oxidize ingested nectar to directly fuel flight when foraging but have to switch to oxidizing stored lipids derived from ingested sugars during the night or long-distance migratory flights. Understanding how this organism moderates energy turnover is hampered by a lack of information regarding how relevant enzymes differ in sequence, expression, and regulation. To explore these questions, we generated a chromosome-scale genome assembly of the ruby-throated hummingbird (A. colubris) using a combination of long- and short-read sequencing, scaffolding it using existing assemblies. We then used hybrid long- and short-read RNA sequencing of liver and muscle tissue in fasted and fed metabolic states for a comprehensive transcriptome assembly and annotation. Our genomic and transcriptomic data found positive selection of key metabolic genes in nectivorous avian species and deletion of critical genes (SLC2A4, GCK) involved in glucostasis in other vertebrates. We found expression of a fructose-specific version of SLC2A5 putatively in place of insulin-sensitive SLC2A5, with predicted protein models suggesting affinity for both fructose and glucose. Alternative isoforms may even act to sequester fructose to preclude limitations from transport in metabolism. Finally, we identified differentially expressed genes from fasted and fed hummingbirds, suggesting key pathways for the rapid metabolic switch hummingbirds undergo.


Assuntos
Aves , Metabolismo Energético , Animais , Aves/genética , Músculos/metabolismo , Genômica , Frutose/metabolismo
10.
Elife ; 122023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37249575

RESUMO

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.


Assuntos
Músculo Esquelético , Termogênese , Camundongos , Humanos , Animais , Músculo Esquelético/metabolismo , Termogênese/genética , Metabolismo Energético/fisiologia , Proteolipídeos/metabolismo , Citoplasma/metabolismo , Cromossomos Humanos/metabolismo , Cálcio/metabolismo
11.
Biochim Biophys Acta Mol Basis Dis ; 1869(5): 166681, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36921737

RESUMO

The adipokine C1q Tumor Necrosis Factor 8 (CTRP8) is the least known member of the 15 CTRP proteins and a ligand of the relaxin receptor RXFP1. We previously demonstrated the ability of the CTRP8-RXFP1 interaction to promote motility, matrix invasion, and drug resistance. The lack of specific tools to detect CTRP8 protein severely limits our knowledge on CTRP8 biological functions in normal and tumor tissues. Here, we have generated and characterized the first specific antiserum to human CTRP8 which identified CTRP8 as a novel marker of tryptase+ mast cells (MCT) in normal human tissues and in the prostate cancer (PC) microenvironment. Using human PC tissue microarrays composed of neoplastic and corresponding tumor-adjacent prostate tissues, we have identified a significantly higher number of CTRP8+ MCT in the peritumor versus intratumor compartment of PC tissues of Gleason scores 6 and 7. Higher numbers of CTRP8+ MCT correlated with the clinical parameter of biochemical recurrence. We showed that the human MC line ROSAKIT WT expressed RXFP1 transcripts and responded to CTRP8 treatment with a small but significant increase in cell proliferation. Like the cognate RXFP1 ligand RLN-2 and the small molecule RXFP1 agonist ML-290, CTRP8 reduced degranulation of ROSAKIT WT MC stimulated by the Ca2+-ionophore A14187. In conclusion, this is the first report to identify the RXFP1 agonist CTRP8 as a novel marker of MCT and autocrine/paracrine oncogenic factor within the PC microenvironment.


Assuntos
Complemento C1q , Neoplasias da Próstata , Humanos , Masculino , Ligantes , Mastócitos , Próstata , Neoplasias da Próstata/genética , Triptases , Microambiente Tumoral , Fatores de Necrose Tumoral
12.
bioRxiv ; 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36778465

RESUMO

The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.

13.
Mol Metab ; 68: 101666, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36587842

RESUMO

OBJECTIVE: Trisomy 21 is one of the most complex genetic perturbations compatible with postnatal survival. Dosage imbalance arising from the triplication of genes on human chromosome 21 (Hsa21) affects multiple organ systems. Much of Down syndrome (DS) research, however, has focused on addressing how aneuploidy dysregulates CNS function leading to cognitive deficit. Although obesity, diabetes, and associated sequelae such as fatty liver and dyslipidemia are well documented in the DS population, only limited studies have been conducted to determine how gene dosage imbalance affects whole-body metabolism. Here, we conduct a comprehensive and systematic analysis of key metabolic parameters across different physiological states in the Ts65Dn trisomic mouse model of DS. METHODS: Ts65Dn mice and euploid littermates were subjected to comprehensive metabolic phenotyping under basal (chow-fed) state and the pathophysiological state of obesity induced by a high-fat diet (HFD). RNA sequencing of liver, skeletal muscle, and two major fat depots were conducted to determine the impact of aneuploidy on tissue transcriptome. Pathway enrichments, gene-centrality, and key driver estimates were performed to provide insights into tissue autonomous and non-autonomous mechanisms contributing to the dysregulation of systemic metabolism. RESULTS: Under the basal state, chow-fed Ts65Dn mice of both sexes had elevated locomotor activity and energy expenditure, reduced fasting serum cholesterol levels, and mild glucose intolerance. Sexually dimorphic deterioration in metabolic homeostasis became apparent when mice were challenged with a high-fat diet. While obese Ts65Dn mice of both sexes exhibited dyslipidemia, male mice also showed impaired systemic insulin sensitivity, reduced mitochondrial activity, and elevated fibrotic and inflammatory gene signatures in the liver and adipose tissue. Systems-level analysis highlighted conserved pathways and potential endocrine drivers of adipose-liver crosstalk that contribute to dysregulated glucose and lipid metabolism. CONCLUSIONS: A combined alteration in the expression of trisomic and disomic genes in peripheral tissues contribute to metabolic dysregulations in Ts65Dn mice. These data lay the groundwork for understanding the impact of aneuploidy on in vivo metabolism.


Assuntos
Síndrome de Down , Intolerância à Glucose , Feminino , Masculino , Camundongos , Animais , Humanos , Síndrome de Down/genética , Aneuploidia , Obesidade/genética , Obesidade/complicações , Metabolismo dos Lipídeos/genética
14.
Cell Mol Gastroenterol Hepatol ; 15(4): 1000-1015, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36592863

RESUMO

BACKGROUND & AIMS: The adipokine CTRP3 has anti-inflammatory effects in several nonintestinal disorders. Although serum CTRP3 is reduced in patients with inflammatory bowel disease (IBD), its function in IBD has not been established. Here, we elucidate the function of CTRP3 in intestinal inflammation. METHODS: CTRP3 knockout (KO) and overexpressing transgenic (Tg) mice, along with their corresponding wild-type littermates, were treated with dextran sulfate sodium for 6-10 days. Colitis phenotypes and histologic data were analyzed. CTRP3-mediated signaling was examined in murine and human intestinal mucosa and mouse intestinal organoids derived from CTRP3 KO and Tg mice. RESULTS: CTRP3 KO mice developed more severe colitis, whereas CTRP3 Tg mice developed less severe colitis than wild-type littermates. The deletion of CTRP3 correlated with decreased levels of Sirtuin-1 (SIRT1), a histone deacetylase, and increased levels of phosphorylated/acetylated NF-κB subunit p65 and proinflammatory cytokines tumor necrosis factor-α and interleukin-6. Results from CTRP3 Tg mice were inverse to those from CTRP3 KO mice. The addition of SIRT1 activator resveratrol to KO intestinal organoids and SIRT1 inhibitor Ex-527 to Tg intestinal organoids suggest that SIRT1 is a downstream effector of CTRP3-related inflammatory changes. In patients with IBD, a similar CTRP3/SIRT1/NF-κB relationship was observed. CONCLUSIONS: CTRP3 expression levels correlate negatively with intestinal inflammation in acute mouse colitis models and patients with IBD. CTRP3 may attenuate intestinal inflammation via SIRT1/NF-κB signaling. The manipulation of CTRP3 signaling, including through the use of SIRT1 activators, may offer translational potential in the treatment of IBD.


Assuntos
Colite , Doenças Inflamatórias Intestinais , Animais , Humanos , Camundongos , Adipocinas/metabolismo , Colite/induzido quimicamente , Colite/metabolismo , Complemento C1q , Inflamação/metabolismo , Camundongos Knockout , Camundongos Transgênicos , NF-kappa B/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Fator de Necrose Tumoral alfa
15.
Diabetes ; 72(2): 184-195, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36448936

RESUMO

Type 1 diabetes (T1D) is a disease in which autoimmune attacks are directed at the insulin-producing ß-cell in the pancreatic islet. Autoantigens on the ß-cell surface membrane are specific markers for molecular recognition and targets for engagement by autoreactive B lymphocytes, which produce islet cell surface autoantibody (ICSA) upon activation. We report the cloning of an ICSA (mAb43) that recognizes a major T1D autoantigen, ZnT8, with a subnanomolar binding affinity and conformation specificity. We demonstrate that cell-surface binding of mAb43 protects the extracellular epitope of ZnT8 against immunolabeling by serum ICSA from a patient with T1D. Furthermore, mAb43 exhibits in vitro and ex vivo specificity for islet cells, mirroring the exquisite specificity of islet autoimmunity in T1D. Systemic administration of mAb43 yields a pancreas-specific biodistribution in mice and islet homing of an mAb43-linked imaging payload through the pancreatic vasculature, thereby validating the in vivo specificity of mAb43. Identifying ZnT8 as a major antigenic target of ICSA allows for research into the molecular recognition and engagement of autoreactive B cells in the chronic phase of T1D progression. The in vivo islet specificity of mAb43 could be further exploited to develop in vivo imaging and islet-specific immunotherapies.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Camundongos , Autoanticorpos , Autoantígenos , Diabetes Mellitus Tipo 1/terapia , Distribuição Tecidual
16.
FASEB J ; 36(6): e22347, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35579659

RESUMO

C1q/TNF-related proteins (CTRP1-15) constitute a conserved group of secreted proteins of the C1q family with diverse functions. In vitro studies have shown that CTRP11/C1QL4 can inhibit adipogenesis, antagonize myoblast fusion, and promote testosterone synthesis and secretion. Whether CTRP11 is required for these processes in vivo remains unknown. Here, we show that knockout (KO) mice lacking CTRP11 have normal skeletal muscle mass and function, and testosterone level, suggesting that CTRP11 is dispensable for skeletal muscle development and testosterone production. We focused our analysis on whether this nutrient-responsive secreted protein plays a role in controlling sugar and fat metabolism. At baseline when mice are fed a standard chow, CTRP11 deficiency affects metabolic parameters in a sexually dimorphic manner. Only Ctrp11-KO female mice have significantly higher fasting serum ketones and reduced physical activity. In the refeeding phase following food withdrawal, Ctrp11-KO female mice have reduced food intake and increased metabolic rate and energy expenditure, highlighting CTRP11's role in fasting-refeeding response. When challenged with a high-fat diet to induce obesity and metabolic dysfunction, CTRP11 deficiency modestly exacerbates obesity-induced glucose intolerance, with more pronounced effects seen in Ctrp11-KO male mice. Switching to a low-fat diet after obesity induction results in greater fat loss in wild type relative to KO male mice, suggesting impaired response to obesity reversal and reduced metabolic flexibility in the absence of CTRP11. Collectively, our data provide genetic evidence for novel sex-dependent metabolic regulation by CTRP11, but note the overall modest contribution of CTRP11 to systemic energy homeostasis.


Assuntos
Complemento C1/metabolismo , Complemento C1q , Dieta Hiperlipídica , Animais , Complemento C1q/metabolismo , Metabolismo Energético/genética , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/metabolismo , Testosterona
17.
Am J Physiol Endocrinol Metab ; 322(6): E480-E493, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35403439

RESUMO

Secreted proteins of the C1q/TNF-related protein (CTRP) family play diverse functions in different organ systems. In the brain, CTRP14/C1QL1 is required for the proper establishment and maintenance of synapses between climbing fibers and cerebellar Purkinje cells. Beyond the central nervous system, the function of CTRP14 is largely unknown. A recent genome-wide association study has implicated CTRP14/C1QL1 as a candidate gene associated with total body fat mass. Here, we explored the potential metabolic roles of CTRP14. We show that Ctrp14 expression in peripheral tissues is dynamically regulated by fasting-refeeding and high-fat feeding. In the chow-fed basal state, Ctrp14 deletion modestly reduces glucose tolerance in knockout (KO) male mice and affects physical activity in a sex- and nutritional state-dependent manner. In the ad libitum fed state, Ctrp14 KO male mice have lower physical activity. In contrast, female KO mice have increased physical activity in the fasted and refed states. In response to an obesogenic diet, CTRP14-deficient mice of either sex gained similar weight and are indistinguishable from wild-type littermates in body composition, lipid profiles, and insulin sensitivity. Ambulatory activity, however, is reduced in Ctrp14 KO male mice. Food intake is also reduced in Ctrp14 KO male mice in the refed period following food deprivation. Meal pattern analyses indicate that decreased caloric intake from fasting to refeeding is due, in part, to smaller meal size. We conclude that CTRP14 is largely dispensable for metabolic homeostasis, but highlight context-dependent and sexually dimorphic metabolic responses of Ctrp14 deletion affecting physical activity and ingestive behaviors.NEW & NOTEWORTHY CTRP14 is a secreted protein whose function in the peripheral tissues is largely unknown. We show that the expression of Ctrp14 in peripheral tissues is regulated by metabolic and nutritional state. We generated mice lacking CTRP14 and show that CTRP14 deficiency alters physical activity and food intake in response to fasting and refeeding. Our data has provided new and valuable information on the physiological function of CTRP14.


Assuntos
Jejum , Resistência à Insulina , Animais , Complemento C1q/genética , Dieta Hiperlipídica , Ingestão de Alimentos/genética , Feminino , Estudo de Associação Genômica Ampla , Resistência à Insulina/genética , Masculino , Camundongos , Camundongos Knockout
18.
Horm Res Paediatr ; 95(1): 43-50, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35172300

RESUMO

INTRODUCTION: Pediatric obesity and diabetes has increased over the last several decades. While the role of common adipokines on metabolic parameters has been well studied in adults, the relationship of novel adipokines and hepatokines in pediatric type 1 (T1D) and type 2 diabetes (T2D) is not well understood. This study assessed novel adipokines C1q/TNF-related proteins (CTRP1 and CTRP9), and hepatokine fibroblast growth factor 21 (FGF21) in youth with T1D and T2D diabetes. METHODS: Participants (n = 80) with T1D (n = 40) enrolled in the Pediatric Diabetes Consortium (PDC) T1D NeOn registry, and T2D (n = 40) from the PDC T2D registry. Cross-sectional analysis compared adipokines (CTRP1, CTRP9, FGF21) between T1D and T2D, and regression models assessed adipokine relationship with clinical characteristics. RESULTS: The mean age of the participants was 14.9 ± 2 years, and 50% were female. T2D participants had a shorter diabetes duration (p = 0.0009), higher weight (p < 0.0001), and BMI (p < 0.0001) than T1D participants. CTRP9 levels were higher in T1D (13,903.6 vs. 3,608.5 pg/mL, p = 0.04) than T2D, and FGF21 levels were higher in T2D (113.1 vs. 70.6 pg/mL, p = 0.03) than T1D, with no differences in CTRP1. In regression analysis of T1D, CTRP9 was positively associated with C-peptide (p = 0.006), and FGF21 was positively associated with hemoglobin A1c (p = 0.04). In T2D, CTRP1 was positively associated with HbA1c (p < 0.001) and glucose (p = 0.004), even after controlling for age, sex, and BMI. CONCLUSIONS: CTRP9 levels are higher in youth with T1D compared to T2D, and FGF21 levels are higher in youth with T2D than T1D. Novel adipokines are related to metabolic homeostasis in the inflammatory milieu of pediatric diabetes.


Assuntos
Adiponectina , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Fatores de Crescimento de Fibroblastos , Proteínas , Adipocinas , Adiponectina/sangue , Adolescente , Criança , Estudos Transversais , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Masculino , Proteínas/análise
19.
J Clin Invest ; 131(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34618683

RESUMO

Central obesity with cardiometabolic syndrome (CMS) is a major global contributor to human disease, and effective therapies are needed. Here, we show that cyclic GMP-selective phosphodiesterase 9A inhibition (PDE9-I) in both male and ovariectomized female mice suppresses preestablished severe diet-induced obesity/CMS with or without superimposed mild cardiac pressure load. PDE9-I reduces total body, inguinal, hepatic, and myocardial fat; stimulates mitochondrial activity in brown and white fat; and improves CMS, without significantly altering activity or food intake. PDE9 localized at mitochondria, and its inhibition in vitro stimulated lipolysis in a PPARα-dependent manner and increased mitochondrial respiration in both adipocytes and myocytes. PPARα upregulation was required to achieve the lipolytic, antiobesity, and metabolic effects of PDE9-I. All these PDE9-I-induced changes were not observed in obese/CMS nonovariectomized females, indicating a strong sexual dimorphism. We found that PPARα chromatin binding was reoriented away from fat metabolism-regulating genes when stimulated in the presence of coactivated estrogen receptor-α, and this may underlie the dimorphism. These findings have translational relevance given that PDE9-I is already being studied in humans for indications including heart failure, and efficacy against obesity/CMS would enhance its therapeutic utility.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Tecido Adiposo/embriologia , Síndrome Metabólica/enzimologia , Obesidade/enzimologia , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Feminino , Masculino , Síndrome Metabólica/genética , Camundongos , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Obesidade/genética , PPAR alfa/genética , PPAR alfa/metabolismo
20.
FASEB J ; 35(11): e21910, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34610176

RESUMO

C1q/TNF-related protein (CTRP) family comprises fifteen highly conserved secretory proteins with diverse central and peripheral functions. In zebrafish, mouse, and human, CTRP4 is most highly expressed in the brain. We previously showed that CTRP4 is a metabolically responsive regulator of food intake and energy balance, and mice lacking CTRP4 exhibit sexually dimorphic changes in ingestive behaviors and systemic metabolism. Recent single-cell RNA sequencing also revealed Ctrp4/C1qtnf4 expression in diverse neuronal cell types across distinct anatomical brain regions, hinting at additional roles in the central nervous system not previously characterized. To uncover additional central functions of CTRP4, we subjected Ctrp4 knockout (KO) mice to a battery of behavioral tests. Relative to wild-type (WT) littermates, loss of CTRP4 does not alter exploratory, anxiety-, or depressive-like behaviors, motor function and balance, sensorimotor gating, novel object recognition, and spatial memory. While pain-sensing mechanisms in response to thermal stress and mild shock are intact, both male and female Ctrp4 KO mice have increased sensitivity to pain induced by higher-level shock, suggesting altered nociceptive function. Importantly, CTRP4 deficiency impairs hippocampal-dependent associative learning and memory as assessed by trace fear conditioning paradigm. This deficit is sex-dependent, affects only female mice, and is associated with altered expression of learning and memory genes (Arc, c-fos, and Pde4d) in the hippocampus and cortex. Altogether, our behavioral and gene expression analyses have uncovered novel aspects of the CTRP4 function and provided a physiological context to further investigate its mechanism of action in the central and peripheral nervous system.


Assuntos
Adipocinas/genética , Expressão Gênica , Técnicas de Inativação de Genes/métodos , Aprendizagem em Labirinto , Memória Espacial , Adipocinas/metabolismo , Animais , Ansiedade/genética , Comportamento Animal , Córtex Cerebelar/metabolismo , Feminino , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Teste de Desempenho do Rota-Rod
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...