Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 115
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Commun ; 5(1): 100671, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553834

RESUMO

Plant root-nodule symbiosis (RNS) with mutualistic nitrogen-fixing bacteria is restricted to a single clade of angiosperms, the Nitrogen-Fixing Nodulation Clade (NFNC), and is best understood in the legume family. Nodulating species share many commonalities, explained either by divergence from a common ancestor over 100 million years ago or by convergence following independent origins over that same time period. Regardless, comparative analyses of diverse nodulation syndromes can provide insights into constraints on nodulation-what must be acquired or cannot be lost for a functional symbiosis-and the latitude for variation in the symbiosis. However, much remains to be learned about nodulation, especially outside of legumes. Here, we employed a large-scale phylogenomic analysis across 88 species, complemented by 151 RNA-seq libraries, to elucidate the evolution of RNS. Our phylogenomic analyses further emphasize the uniqueness of the transcription factor NIN as a master regulator of nodulation and identify key mutations that affect its function across the NFNC. Comparative transcriptomic assessment revealed nodule-specific upregulated genes across diverse nodulating plants, while also identifying nodule-specific and nitrogen-response genes. Approximately 70% of symbiosis-related genes are highly conserved in the four representative species, whereas defense-related and host-range restriction genes tend to be lineage specific. Our study also identified over 900 000 conserved non-coding elements (CNEs), over 300 000 of which are unique to sampled NFNC species. NFNC-specific CNEs are enriched with the active H3K9ac mark and are correlated with accessible chromatin regions, thus representing a pool of candidate regulatory elements for genes involved in RNS. Collectively, our results provide novel insights into the evolution of nodulation and lay a foundation for engineering of RNS traits in agriculturally important crops.


Assuntos
Fabaceae , Simbiose , Simbiose/genética , Filogenia , Nitrogênio , Nódulos Radiculares de Plantas/genética , Nódulos Radiculares de Plantas/microbiologia , Fabaceae/microbiologia
2.
BMC Med ; 21(1): 178, 2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170273

RESUMO

BACKGROUND: Early-stage breast cancer patients treated with chemotherapy risk the development of metabolic disease and weight gain, which can result in increased morbidity and reduced quality of life in survivorship. We aimed to analyze changes within the gastrointestinal microbiome of early-stage breast cancer patients treated with and without chemotherapy to investigate a potential relationship between dysbiosis, a systemic inflammatory response, and resultant anthropomorphic changes. METHODS: We undertook an a priori analysis of serially collected stool and plasma samples from 40 patients with early-stage breast cancer who underwent adjuvant endocrine therapy only, adjuvant chemotherapy only, or both. Gut microbiota were assessed by metagenomic comparison of stool samples following deep sequencing. Inflammatory biomarkers were evaluated by proteomic analysis of plasma and measurement of fecal calprotectin. Body composition was investigated by dual-energy X-ray absorptiometry to determine biomass indices. RESULTS: As opposed to treatment with endocrine therapy only, chemotherapy resulted in statistically and clinically significant weight gain and an increase in the android to gynoid ratio of fat distribution. Patients treated with chemotherapy gained an average of 0.15% total mass per month, as opposed to a significantly different loss of 0.19% in those patients who received endocrine-only therapy. Concurrently, a twofold increase in fecal calprotectin occurred after chemotherapy that is indicative of interferon-dependent inflammation and evidence of colonic inflammation. These anthropomorphic and inflammatory changes occurred in concert with a chemotherapy-dependent effect on the gut microbiome as evidenced by a reduction in both the abundance and variety of microbial species. CONCLUSIONS: We confirm the association of chemotherapy treatment with weight gain and potential deleterious anthropometric changes and suggest that alterations of bacterial flora may contribute to these phenomena through the induction of systemic inflammation. Consequently, the gut microbiome may be a future target for intervention in preventing chemotherapy-dependent anthropometric changes.


Assuntos
Antineoplásicos , Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Estudos de Coortes , Estudos Prospectivos , Disbiose/induzido quimicamente , Qualidade de Vida , Proteômica , Inflamação/induzido quimicamente , Aumento de Peso , Fezes/química , Fezes/microbiologia , Antineoplásicos/efeitos adversos , Complexo Antígeno L1 Leucocitário/análise , Complexo Antígeno L1 Leucocitário/uso terapêutico
3.
J Funct Biomater ; 14(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36976059

RESUMO

Microtubules are cylindrical protein polymers assembled in the cytoplasm of all eukaryotic cells by polymerization of aß tubulin dimers, which are involved in cell division, migration, signaling, and intracellular traffic. These functions make them essential in the proliferation of cancerous cells and metastases. Tubulin has been the molecular target of many anticancer drugs because of its crucial role in the cell proliferation process. By developing drug resistance, tumor cells severely limit the successful outcomes of cancer chemotherapy. Hence, overcoming drug resistance motivates the design of new anticancer therapeutics. Here, we retrieve short peptides obtained from the data repository of antimicrobial peptides (DRAMP) and report on the computational screening of their predicted tertiary structures for the ability to inhibit tubulin polymerization using multiple combinatorial docking programs, namely PATCHDOCK, FIREDOCK, and ClusPro. The interaction visualizations show that all the best peptides from the docking analysis bind to the interface residues of the tubulin isoforms αßl, αßll, αßlll, and αßlV, respectively. The docking studies were further confirmed by a molecular dynamics simulation, in which the computed root-mean-square deviation (RMSD), and root-mean-square fluctuation (RMSF), verified the stable nature of the peptide-tubulin complexes. Physiochemical toxicity and allergenicity studies were also performed. This present study suggests that these identified anticancer peptide molecules might destabilize the tubulin polymerization process and hence can be suitable candidates for novel drug development. It is concluded that wet-lab experiments are needed to validate these findings.

4.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835426

RESUMO

Over the past two decades, it was discovered that introducing synthetic small interfering RNAs (siRNAs) into the cytoplasm facilitates effective gene-targeted silencing. This compromises gene expression and regulation by repressing transcription or stimulating sequence-specific RNA degradation. Substantial investments in developing RNA therapeutics for disease prevention and treatment have been made. We discuss the application to proprotein convertase subtilisin/kexin type 9 (PCSK9), which binds to and degrades the low-density lipoprotein cholesterol (LDL-C) receptor, interrupting the process of LDL-C uptake into hepatocytes. PCSK9 loss-of-function modifications show significant clinical importance by causing dominant hypocholesterolemia and lessening the risk of cardiovascular disease (CVD). Monoclonal antibodies and small interfering RNA (siRNA) drugs targeting PCSK9 are a significant new option for managing lipid disorders and improving CVD outcomes. In general, monoclonal antibodies are restricted to binding with cell surface receptors or circulating proteins. Similarly, overcoming the intracellular and extracellular defenses that prevent exogenous RNA from entering cells must be achieved for the clinical application of siRNAs. N-acetylgalactosamine (GalNAc) conjugates are a simple solution to the siRNA delivery problem that is especially suitable for treating a broad spectrum of diseases involving liver-expressed genes. Inclisiran is a GalNAc-conjugated siRNA molecule that inhibits the translation of PCSK9. The administration is only required every 3 to 6 months, which is a significant improvement over monoclonal antibodies for PCSK9. This review provides an overview of siRNA therapeutics with a focus on detailed profiles of inclisiran, mainly its delivery strategies. We discuss the mechanisms of action, its status in clinical trials, and its prospects.


Assuntos
Anticolesterolemiantes , Doenças Cardiovasculares , Hipercolesterolemia , RNA Interferente Pequeno , Humanos , Anticorpos Monoclonais/uso terapêutico , Anticolesterolemiantes/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , LDL-Colesterol , Hipercolesterolemia/metabolismo , Hipercolesterolemia/terapia , Pró-Proteína Convertase 9/genética , RNA Interferente Pequeno/uso terapêutico
5.
New Phytol ; 235(4): 1409-1425, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35560066

RESUMO

The Pedinophyceae (Viridiplantae) comprise a class of small uniflagellate algae with a pivotal position in the phylogeny of the Chlorophyta as the sister group of the 'core chlorophytes'. We present a chromosome-level genome assembly of the freshwater type species of the class, Pedinomonas minor. We sequenced the genome using Pacbio, Illumina and Hi-C technologies, performed comparative analyses of genome and gene family evolution, and analyzed the transcriptome under various abiotic stresses. Although the genome is relatively small (55 Mb), it shares many traits with core chlorophytes including number of introns and protein-coding genes, messenger RNA (mRNA) lengths, and abundance of transposable elements. Pedinomonas minor is only bounded by the plasma membrane, thriving in temporary habitats that frequently dry out. Gene family innovations and expansions and transcriptomic responses to abiotic stresses have shed light on adaptations of P. minor to its fluctuating environment. Horizontal gene transfers from bacteria and fungi have possibly contributed to the evolution of some of these traits. We identified a putative endogenization site of a nucleocytoplasmic large DNA virus and hypothesized that endogenous viral elements donated foreign genes to the host genome, their spread enhanced by transposable elements, located at gene boundaries in several of the expanded gene families.


Assuntos
Clorófitas , Elementos de DNA Transponíveis , Clorófitas/metabolismo , Cromossomos , Elementos de DNA Transponíveis/genética , Filogenia , Estresse Fisiológico/genética
6.
Proc Natl Acad Sci U S A ; 119(15): e2100361119, 2022 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-35394876

RESUMO

As a midsized gene family conserved more by lineage than function, the typical plant terpene synthases (TPSs) could be a valuable tool to examine plant evolution. TPSs are pivotal in biosynthesis of gibberellins and related phytohormones as well as in formation of the extensive arsenal of specialized plant metabolites mediating ecological interactions whose production is often lineage specific. Yet the origin and early evolution of the TPS family is not well understood. Systematic analysis of an array of transcriptomes and sequenced genomes indicated that the TPS family originated after the divergence of land plants from charophytic algae. Phylogenetic and biochemical analyses support the hypothesis that the ancestral TPS gene encoded a bifunctional class I and II diterpene synthase producing the ent-kaurene required for phytohormone production in all extant lineages of land plants. Moreover, the ancestral TPS gene likely underwent duplication at least twice early in land plant evolution. Together these two gave rise to three TPS lineages leading to the extant TPS-c, TPS-e/f, and the remaining TPS (h/d/a/b/g) subfamilies, with the latter dedicated to secondary rather than primary metabolism while the former two contain those genes involved in ent-kaurene production. Nevertheless, parallel evolution from the ent-kaurene­producing class I and class II diterpene synthases has led to roles for TPS-e/f and -c subfamily members in secondary metabolism as well. These results clarify TPS evolutionary history and provide context for the role of these genes in producing the vast diversity of terpenoid natural products observed today in various land plant lineages.


Assuntos
Alquil e Aril Transferases , Embriófitas , Evolução Molecular , Proteínas de Plantas , Alquil e Aril Transferases/classificação , Alquil e Aril Transferases/genética , Embriófitas/enzimologia , Embriófitas/genética , Duplicação Gênica , Filogenia , Reguladores de Crescimento de Plantas , Proteínas de Plantas/classificação , Proteínas de Plantas/genética , Terpenos/metabolismo
7.
Front Microbiol ; 13: 829378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185850

RESUMO

Shotgun metagenomics studies have improved our understanding of microbial population dynamics and have revealed significant contributions of microbes to gut homeostasis. They also allow in silico inference of the metagenome. While they link the microbiome with metabolic abnormalities associated with disease phenotypes, they do not capture microbial gene expression patterns that occur in response to the multitude of stimuli that constantly ambush the gut environment. Metatranscriptomics closes that gap, but its implementation is more expensive and tedious. We assessed the metabolic perturbations associated with gut inflammation using shotgun metagenomics and metatranscriptomics. Shotgun metagenomics detected changes in abundance of bacterial taxa known to be SCFA producers, which favors gut homeostasis. Bacteria in the phylum Firmicutes were found at decreased abundance, while those in phyla Bacteroidetes and Proteobacteria were found at increased abundance. Surprisingly, inferring the coding capacity of the microbiome from shotgun metagenomics data did not result in any statistically significant difference, suggesting functional redundancy in the microbiome or poor resolution of shotgun metagenomics data to profile bacterial pathways, especially when sequencing is not very deep. Obviously, the ability of metatranscriptomics libraries to detect transcripts expressed at basal (or simply low) levels is also dependent on sequencing depth. Nevertheless, metatranscriptomics informed about contrasting roles of bacteria during inflammation. Functions involved in nutrient transport, immune suppression and regulation of tissue damage were dramatically upregulated, perhaps contributed by homeostasis-promoting bacteria. Functions ostensibly increasing bacteria pathogenesis were also found upregulated, perhaps as a consequence of increased abundance of Proteobacteria. Bacterial protein synthesis appeared downregulated. In summary, shotgun metagenomics was useful to profile bacterial population composition and taxa relative abundance, but did not inform about differential gene content associated with inflammation. Metatranscriptomics was more robust for capturing bacterial metabolism in real time. Although both approaches are complementary, it is often not possible to apply them in parallel. We hope our data will help researchers to decide which approach is more appropriate for the study of different aspects of the microbiome.

8.
Cells ; 10(11)2021 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-34831456

RESUMO

Fecal microbiota transplantation (FMT) is highly effective in recurrent Clostridioides difficile infection (CDI); increasing evidence supports FMT in severe or fulminant Clostridioides difficile infection (SFCDI). However, the multifactorial mechanisms that underpin the efficacy of FMT are not fully understood. Systems biology approaches using high-throughput technologies may help with mechanistic dissection of host-microbial interactions. Here, we have undertaken a deep phenomics study on four adults receiving sequential FMT for SFCDI, in which we performed a longitudinal, integrative analysis of multiple host factors and intestinal microbiome changes. Stool samples were profiled for changes in gut microbiota and metabolites and blood samples for alterations in targeted epigenomic, metabonomic, glycomic, immune proteomic, immunophenotyping, immune functional assays, and T-cell receptor (TCR) repertoires, respectively. We characterised temporal trajectories in gut microbial and host immunometabolic data sets in three responders and one non-responder to sequential FMT. A total of 562 features were used for analysis, of which 78 features were identified, which differed between the responders and the non-responder. The observed dynamic phenotypic changes may potentially suggest immunosenescent signals in the non-responder and may help to underpin the mechanisms accompanying successful FMT, although our study is limited by a small sample size and significant heterogeneity in patient baseline characteristics. Our multi-omics integrative longitudinal analytical approach extends the knowledge regarding mechanisms of efficacy of FMT and highlights preliminary novel signatures, which should be validated in larger studies.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Idoso , Idoso de 80 Anos ou mais , Animais , Anticorpos Neutralizantes/metabolismo , Toxinas Bacterianas/imunologia , Chlorocebus aethiops , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Análise por Conglomerados , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal , Genômica , Humanos , Imunossenescência , Masculino , Pessoa de Meia-Idade , Filogenia , Receptores de Antígenos de Linfócitos T/metabolismo , Fatores de Tempo , Resultado do Tratamento , Células Vero
9.
Cell Rep Med ; 2(10): 100404, 2021 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-34755126

RESUMO

Pathological examination is the gold standard for cancer diagnosis, and breast tumor cells are often found in clusters. We report a case study on one triple-negative breast cancer (TNBC) patient, analyzing tumor development, metastasis, and prognosis with simultaneous DNA and RNA sequencing of pathologist-defined cell clusters from multiregional frozen sections. The cell clusters are isolated by laser capture microdissection (LCM) from primary tumor tissue, lymphatic vessels, and axillary lymph nodes. Data are reported for a total of 97 cell clusters. A combination of tumor cell-cluster clonality and phylogeny reveals 3 evolutionarily distinct pathways for this patient, each associated with a unique mRNA signature, and each correlated with disparate survival outcomes. Hub gene analysis indicates that extensive downregulation of ribosomal protein mRNA is a potential marker of poor prognosis in breast cancer.


Assuntos
Linhagem da Célula/genética , DNA de Neoplasias/genética , Genoma Humano , RNA Neoplásico/genética , Neoplasias de Mama Triplo Negativas/diagnóstico , Neoplasias de Mama Triplo Negativas/genética , Agregação Celular/genética , Células Clonais , DNA de Neoplasias/metabolismo , Progressão da Doença , Células Epiteliais/classificação , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Evolução Fatal , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Linfonodos/metabolismo , Linfonodos/patologia , Metástase Linfática , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Linfócitos/classificação , Linfócitos/metabolismo , Linfócitos/patologia , Filogenia , Prognóstico , RNA Neoplásico/metabolismo , Proteínas Ribossômicas/genética , Proteínas Ribossômicas/metabolismo , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Adulto Jovem
10.
Sci Rep ; 11(1): 15618, 2021 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-34341365

RESUMO

C4 photosynthesis is a remarkable complex trait, elucidations of the evolutionary trajectory of C4 photosynthesis from its ancestral C3 pathway can help us better understand the generic principles of the evolution of complex traits and guide the engineering of C3 crops for higher yields. Here, we used the genus Flaveria that contains C3, C3-C4, C4-like and C4 species as a system to study the evolution of C4 photosynthesis. We first mapped transcript abundance, protein sequence and morphological features onto the phylogenetic tree of the genus Flaveria, and calculated the evolutionary correlation of different features; we then predicted the relative changes of ancestral nodes of those features to illustrate the major events during the evolution of C4 photosynthesis. We found that gene expression and protein sequence showed consistent modification patterns in the phylogenetic tree. High correlation coefficients ranging from 0.46 to 0.9 among gene expression, protein sequence and morphology were observed. The greatest modification of those different features consistently occurred at the transition between C3-C4 species and C4-like species. Our results show highly coordinated changes in gene expression, protein sequence and morphological features, which support evolutionary major events during the evolution of C4 metabolism.


Assuntos
Flaveria , Fotossíntese , Filogenia , Evolução Biológica , Cloroplastos/metabolismo
11.
Sci Rep ; 11(1): 13053, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34158543

RESUMO

Detection of low abundance target DNA/RNA for clinical or research purposes is challenging because the target sequences can be hidden under a large background of human genomic or non-human metagenomic sequences. We describe a probe-based capture method to enrich for target sequences with DNA-clicked iron oxide nanoparticles. Our method was tested against commercial capture assays using streptavidin beads, on a set of probes derived from a common genotype of the hepatitis C virus. We showed that our method is more specific and sensitive, most likely due to the combination of an inert silica coating and a high density of DNA probes clicked to the nanoparticles. This facilitates target capture below the limits of detection for TaqMan qPCR, and we believe that this method has the potential to transform management of infectious diseases.


Assuntos
Química Click , DNA/análise , Nanopartículas Magnéticas de Óxido de Ferro/química , Oligonucleotídeos/química , RNA/análise , Genoma Viral , Hepacivirus/genética , Hepatite/sangue , Hepatite/virologia , Humanos , Estreptavidina/química
12.
NPJ Genom Med ; 6(1): 19, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33627657

RESUMO

Precision medicine initiatives are being launched worldwide, each with the capacity to sequence many thousands to millions of human genomes. At the strategic planning level, all are debating the extent to which these resources will be directed towards rare diseases (and cancers) versus common diseases. However, these are not mutually exclusive choices. The organizational and governmental infrastructure created for rare diseases is extensible to common diseases. As we will explain, the underlying technology can also be used to identify drug targets for common diseases with a strategy focused on naturally occurring human knockouts. This flips on its head the prevailing modus operandi of studying people with diseases of interest, shifting the onus to defining traits worth emulating by pharmaceuticals, and searching phenotypically for people with these traits. This also shifts the question of what is rare or common from the many underlying causes to the possibility of a common final pathway.

14.
Cell Host Microbe ; 29(2): 152-154, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33571441

RESUMO

Nucleocytoplasmic large DNA viruses (NCLDVs) are widespread in the biosphere. This issue of Cell Host & Microbe, Nelson et al., and a recent Nature paper, Moniruzzaman et al., show NCLDVs can integrate into host genomes, highlighting a mechanism of large-scale virus-mediated horizontal gene transfer (vHGT) driving eukaryotic evolution.


Assuntos
Vírus Gigantes , Microalgas , Vírus , Vírus de DNA/genética , Eucariotos/genética , Transferência Genética Horizontal , Vírus Gigantes/genética , Vírus/genética
15.
Sci Rep ; 10(1): 18349, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110112

RESUMO

Fundamental restoration ecology and community ecology theories can help us better understand the underlying mechanisms of fecal microbiota transplantation (FMT) and to better design future microbial therapeutics for recurrent Clostridioides difficile infections (rCDI) and other dysbiosis-related conditions. In this study, stool samples were collected from donors and rCDI patients one week prior to FMT (pre-FMT), as well as from patients one week following FMT (post-FMT). Using metagenomic sequencing and machine learning, our results suggested that FMT outcome is not only dependent on the ecological structure of the recipients, but also the interactions between the donor and recipient microbiomes at the taxonomical and functional levels. We observed that the presence of specific bacteria in donors (Clostridioides spp., Desulfovibrio spp., Odoribacter spp. and Oscillibacter spp.) and the absence of fungi (Yarrowia spp.) and bacteria (Wigglesworthia spp.) in recipients prior to FMT could predict FMT success. Our results also suggested a series of interlocked mechanisms for FMT success, including the repair of the disturbed gut ecosystem by transient colonization of nexus species followed by secondary succession of bile acid metabolizers, sporulators, and short chain fatty acid producers.


Assuntos
Transplante de Microbiota Fecal , Fezes/microbiologia , Microbioma Gastrointestinal , Adulto , Bacteroidetes/metabolismo , Clostridiales/metabolismo , Clostridioides/metabolismo , Infecções por Clostridium/microbiologia , Infecções por Clostridium/terapia , Desulfovibrio/metabolismo , Feminino , Microbioma Gastrointestinal/genética , Humanos , Aprendizado de Máquina , Masculino , Metagenômica , Doadores de Tecidos , Resultado do Tratamento
16.
Sci Rep ; 10(1): 15483, 2020 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-32968137

RESUMO

Mycosis fungoides (MF) is the most common cutaneous T-cell lymphoma. Lesions of MF are formed by hematogenous seeding the skin with polyclonal (clonotypically diverse) neoplastic T-cells which accumulate numerous mutations and display a high degree of mutational, intratumoral heterogeneity (ITH). A characteristic but poorly studied feature of MF is epidermotropism, the tendency to infiltrate skin epithelial layer (epidermis) in addition to the vascularized dermis. By sequencing the exomes of the microdissected clusters of lymphoma cells from the epidermis and the dermis, we found that those microenvironments comprised different malignant clonotypes. Subclonal structure witnessed the independent mutational evolution in the epidermis and dermis. Thus, the epidermal involvement in MF could not be explained by gradual infiltration from the dermis but was caused by a separate seeding process followed by a quasi-neutral, branched evolution. In conclusion, tissue microenvironments shape the subclonal architecture in MF leading to "ecological heterogeneity" which contributes to the total ITH. Since ITH adversely affects cancer prognosis, targeting the microenvironment may present therapeutic opportunities in MF and other cancers.


Assuntos
Linfoma/genética , Neoplasias Cutâneas/genética , Microambiente Tumoral/genética , Epiderme/metabolismo , Genes Neoplásicos/genética , Humanos , Mutação/genética , Filogenia , Pele/metabolismo , Linfócitos T/metabolismo
18.
Nat Ecol Evol ; 4(9): 1220-1231, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32572216

RESUMO

Genome analysis of the pico-eukaryotic marine green alga Prasinoderma coloniale CCMP 1413 unveils the existence of a novel phylum within green plants (Viridiplantae), the Prasinodermophyta, which diverged before the split of Chlorophyta and Streptophyta. Structural features of the genome and gene family comparisons revealed an intermediate position of the P. coloniale genome (25.3 Mb) between the extremely compact, small genomes of picoplanktonic Mamiellophyceae (Chlorophyta) and the larger, more complex genomes of early-diverging streptophyte algae. Reconstruction of the minimal core genome of Viridiplantae allowed identification of an ancestral toolkit of transcription factors and flagellar proteins. Adaptations of P. coloniale to its deep-water, oligotrophic environment involved expansion of light-harvesting proteins, reduction of early light-induced proteins, evolution of a distinct type of C4 photosynthesis and carbon-concentrating mechanism, synthesis of the metal-complexing metabolite picolinic acid, and vitamin B1, B7 and B12 auxotrophy. The P. coloniale genome provides first insights into the dawn of green plant evolution.


Assuntos
Clorófitas , Clorófitas/genética , Genoma , Filogenia
19.
Blood Adv ; 4(11): 2489-2500, 2020 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502269

RESUMO

Mycosis fungoides (MF) is a slowly progressive cutaneous T-cell lymphoma (CTCL) for which there is no cure. In the early plaque stage, the disease is indolent, but development of tumors heralds an increased risk of metastasis and death. Previous research into the genomic landscape of CTCL revealed a complex pattern of >50 driver mutations implicated in more than a dozen signaling pathways. However, the genomic mechanisms governing disease progression and treatment resistance remain unknown. Building on our previous discovery of the clonotypic heterogeneity of MF, we hypothesized that this lymphoma does not progress in a linear fashion as currently thought but comprises heterogeneous mutational subclones. We sequenced exomes of 49 cases of MF and identified 28 previously unreported putative driver genes. MF exhibited extensive intratumoral heterogeneity (ITH) of a median of 6 subclones showing a branched phylogenetic relationship pattern. Stage progression was correlated with an increase in ITH and redistribution of mutations from stem to clades. The pattern of clonal driver mutations was highly variable, with no consistent mutations among patients. Similar intratumoral heterogeneity was detected in leukemic CTCL (Sézary syndrome). Based on these findings, we propose a model of MF pathogenesis comprising divergent evolution of cancer subclones and discuss how ITH affects the efficacy of targeted drug therapies and immunotherapies for CTCL.


Assuntos
Linfoma Cutâneo de Células T , Neoplasias Cutâneas , Genômica , Humanos , Leucócitos Mononucleares , Linfoma Cutâneo de Células T/genética , Filogenia , Neoplasias Cutâneas/genética
20.
Annu Rev Plant Biol ; 71: 741-765, 2020 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-31851546

RESUMO

The 1,000 Plants (1KP) initiative was the first large-scale effort to collect next-generation sequencing (NGS) data across a phylogenetically representative sampling of species for a major clade of life, in this case theViridiplantae, or green plants. As an international multidisciplinary consortium, we focused on plant evolution and its practical implications. Among the major outcomes were the inference of a reference species tree for green plants by phylotranscriptomic analysis of low-copy genes, a survey of paleopolyploidy (whole-genome duplications) across the Viridiplantae, the inferred evolutionary histories for many gene families and biological processes, the discovery of novel light-sensitive proteins for optogenetic studies in mammalian neuroscience, and elucidation of the genetic network for a complex trait (C4 photosynthesis). Altogether, 1KP demonstrated how value can be extracted from a phylodiverse sequencing data set, providing a template for future projects that aim to generate even more data, including complete de novo genomes, across the tree of life.


Assuntos
Transcriptoma , Viridiplantae , Evolução Molecular , Redes Reguladoras de Genes , Filogenia , Viridiplantae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...