Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLOS Digit Health ; 2(7): e0000291, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37410727

RESUMO

Neurodevelopment in the first 10 years of life is a critical time window during which milestones that define an individual's functional potential are achieved. Comprehensive multimodal neurodevelopmental monitoring is particularly crucial for socioeconomically disadvantaged, marginalized, historically underserved and underrepresented communities as well as medically underserved areas. Solutions designed for use outside the traditional clinical environment represent an opportunity for addressing such health inequalities. In this work, we present an experimental platform, ANNE EEG, which adds 16-channel cerebral activity monitoring to the existing, USA FDA-cleared ANNE wireless monitoring platform which provides continuous electrocardiography, respiratory rate, pulse oximetry, motion, and temperature measurements. The system features low-cost consumables, real-time control and streaming with widely available mobile devices, and fully wearable operation to allow a child to remain in their naturalistic environment. This multi-center pilot study successfully collected ANNE EEG recordings from 91 neonatal and pediatric patients at academic quaternary pediatric care centers and in LMIC settings. We demonstrate the practicality and feasibility to conduct electroencephalography studies with high levels of accuracy, validated via both quantitative and qualitative metrics, compared against gold standard systems. An overwhelming majority of parents surveyed during studies indicated not only an overall preference for the wireless system, but also that its use would improve their children's physical and emotional health. Our findings demonstrate the potential for the ANNE system to perform multimodal monitoring to screen for a variety of neurologic diseases that have the potential to negatively impact neurodevelopment.

2.
Pediatr Neurol ; 127: 56-59, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34971847

RESUMO

BACKGROUND: Seizures are a common complication of both primary central nervous system (CNS) tumors and other oncologic processes with CNS involvement. They occur most frequently during induction or consolidation therapy, but there is a growing body of evidence that they can also develop later in life. Refractory epilepsy can develop as a late complication for survivors of pediatric cancer with CNS involvement who undergo chemoradiation therapy. PATIENT DESCRIPTIONS: We report three patients who presented with atypical nonconvulsive seizures (behavioral arrest, falls, nonsensical speech) up to 14 years after cancer diagnosis. All underwent whole-brain radiation in addition to chemotherapy. None had a prior epilepsy diagnosis or known prior seizures. One patient suddenly passed away of unclear causes five months after diagnosis, and the other two continued to have EEG findings consistent with cerebral dysfunction and epileptogenicity years after diagnosis. CONCLUSION: We hypothesize that the development of refractory epilepsy may be a late effect of radiation treatment. Given the high morbidity and mortality associated with epilepsy, early identification is crucial to improve outcomes and quality of life for this vulnerable population. This is especially true for patients with medication-refractory epilepsy as there is an increasing breadth of effective surgical options.


Assuntos
Sobreviventes de Câncer , Neoplasias do Sistema Nervoso Central/tratamento farmacológico , Neoplasias do Sistema Nervoso Central/radioterapia , Quimiorradioterapia/efeitos adversos , Epilepsia Resistente a Medicamentos/etiologia , Adolescente , Adulto , Criança , Irradiação Craniana/efeitos adversos , Humanos
3.
Brain ; 143(2): 554-569, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31860064

RESUMO

The location of interictal spikes is used to aid surgical planning in patients with medically refractory epilepsy; however, their spatial and temporal dynamics are poorly understood. In this study, we analysed the spatial distribution of interictal spikes over time in 20 adult and paediatric patients (12 females, mean age = 34.5 years, range = 5-58) who underwent intracranial EEG evaluation for epilepsy surgery. Interictal spikes were detected in the 24 h surrounding each seizure and spikes were clustered based on spatial location. The temporal dynamics of spike spatial distribution were calculated for each patient and the effects of sleep and seizures on these dynamics were evaluated. Finally, spike location was assessed in relation to seizure onset location. We found that spike spatial distribution fluctuated significantly over time in 14/20 patients (with a significant aggregate effect across patients, Fisher's method: P < 0.001). A median of 12 sequential hours were required to capture 80% of the variability in spike spatial distribution. Sleep and postictal state affected the spike spatial distribution in 8/20 and 4/20 patients, respectively, with a significant aggregate effect (Fisher's method: P < 0.001 for each). There was no evidence of pre-ictal change in the spike spatial distribution for any patient or in aggregate (Fisher's method: P = 0.99). The electrode with the highest spike frequency and the electrode with the largest area of downstream spike propagation both localized the seizure onset zone better than predicted by chance (Wilcoxon signed-rank test: P = 0.005 and P = 0.002, respectively). In conclusion, spikes localize seizure onset. However, temporal fluctuations in spike spatial distribution, particularly in relation to sleep and post-ictal state, can confound localization. An adequate duration of intracranial recording-ideally at least 12 sequential hours-capturing both sleep and wakefulness should be obtained to sufficiently sample the interictal network.


Assuntos
Mapeamento Encefálico , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsias Parciais/fisiopatologia , Convulsões/fisiopatologia , Adolescente , Adulto , Algoritmos , Mapeamento Encefálico/métodos , Criança , Pré-Escolar , Eletrocorticografia/métodos , Eletrodos Implantados , Eletroencefalografia/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto Jovem
4.
Epilepsia ; 60(5): 898-910, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31006860

RESUMO

OBJECTIVE: Interictal spikes are a characteristic feature of invasive electroencephalography (EEG) recordings in children with refractory epilepsy. Spikes frequently co-occur across multiple brain regions with discernable latencies, suggesting that spikes can propagate through distributed neural networks. The purpose of this study was to examine the long-term reproducibility of spike propagation patterns over hours to days of interictal recording. METHODS: Twelve children (mean age 13.1 years) were retrospectively studied. A mean ± standard deviation (SD) of 47.2 ± 40.1 hours of interictal EEG recordings were examined per patient (range 17.5-166.5 hours). Interictal recordings were divided into 30-minute segments. Networks were extracted based on the frequency of spike coactivation between pairs of electrodes. For each 30-minute segment, electrodes were assigned a "Degree Preference (DP)" based on the tendency to appear upstream or downstream within propagation sequences. The consistency of DPs across segments ("DP-Stability") was quantified using the Spearman rank correlation. RESULTS: Regions exhibited highly stable preferences to appear upstream, intermediate, or downstream in spike propagation sequences. Across networks, the mean ± SD DP-Stability was 0.88 ± 0.07, indicating that propagation patterns observed in 30-minute segments were representative of the patterns observed in the full interictal window. At the group level, regions involved in seizure generation appeared more upstream in spike propagation sequences. SIGNIFICANCE: Interictal spike propagation is a highly reproducible output of epileptic networks. These findings shed new light on the spatiotemporal dynamics that may constrain the network mechanisms of refractory epilepsy.


Assuntos
Epilepsia Resistente a Medicamentos/fisiopatologia , Eletroencefalografia , Rede Nervosa/fisiopatologia , Adolescente , Criança , Epilepsia Resistente a Medicamentos/terapia , Terapia por Estimulação Elétrica , Eletrodos Implantados , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Estudos Retrospectivos , Espaço Subdural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...