Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Chem Biodivers ; : e202401430, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-39031897

RESUMO

A series of resveratrol surrogate molecules were designed, synthesized and biologically evaluated for inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) along with anti-oxidant activity as potential novel multifunctional agents against Alzheimer's disease (AD). Six novel compounds were synthesized by reacting (E)-4-(3,5-Dimethoxystyryl) aniline with benzaldehyde and some selected derivatives of benzaldehyde in the presence of ethanol and a few drops of glacial acetic acid which followed the general scheme involved in the formation of Schiff bases. The spectral analysis data including FT-IR, 1H-NMR, 13C-NMR, and Mass spectroscopy results were found to be in good agreement with the newly synthesized compounds (Resveratrol Surrogate Molecules 1-6). The synthesized compounds were evaluated for their dual cholinesterase inhibitory activities, cytotoxic effect, and anti-oxidant potential. The results showed that compound RSM-5 showed potent inhibitory activity against AChE and BChE. In, addition the cytotoxicity of the compound RSM5 is less and found to be within the desirable limit indicating the potential safety of RSM5. Also, it possesses substantial anti-oxidant activity which qualifies RSM5 as an anti-AD agent. Taken together, these findings demonstrate that the molecule RSM5 had the most multifunctional properties and could be a promising lead molecule for the future development of drugs for Alzheimer's treatments.

2.
J Chem Phys ; 160(24)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38912625

RESUMO

In this work, pure and S-N/WO3 (1%-7%) nanoparticles (NPs) have been developed for the degradation of MB dye. Optical properties, vibrational analysis, morphology, structural analysis, and photocatalytic activity of the samples have been evaluated using a variety of characterization techniques, including UV-vis, PL, FTIR, SEM, and x-ray diffraction (XRD). The XRD patterns showed that the stability of the orthorhombic phase of WO3 was affected by the concentrations of S and N. In SEM, nanospheres with an average size of 80 nm of NPs have been observed. The PL results showed that the e-, h+ recombination rate for the S-N7%/WO3 sample was the lowest. The degradation of MB dye has also been investigated in order to investigate the photocatalytic performance. Remarkably, S-N7%/WO3 shows the best results, with a maximum degradation of 90% in 120 min. The stability of the improved catalyst was tested using recycling and trapping studies. S-N7%/WO3 catalyst's exceptional photocatalytic activity highlights its potential use in wastewater treatment. This study will be helpful for manufacturing innovation.

3.
Heliyon ; 10(11): e31316, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38868065

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have become a highly regarded substance in various industries especially biologically synthesized ZnO NPs due to their adherence to the principles of green chemistry. However, concerns have been raised regarding the potential cytotoxic effects of ZnO NPs on biological systems. This study aimed to investigate and compare the cytotoxicity of ZnO NPs that were synthesized through chemical (C-ZnO NPs) and green approach using Musa acuminata leaf aqueous extract (Ma-ZnO NPs) on Vero cells. Characterization of ZnO NPs through Uv-Vis, FESEM, EDX, XRD, FTIR and XPS confirmed the successful synthesis of C- and Ma-ZnO NPs. MTT and ROS assays revealed that C- and Ma-ZnO NPs induced a concentration- and time-dependent cytotoxic effect on Vero cells. Remarkably, Ma-ZnO NPs showed significantly higher cell viability compared to C-ZnO NPs. The corelation of ROS and vell viability suggest that elevated ROS levels can lead to cell damage and even cell death. Flow cytometry analysis indicated that Ma-ZnO NPs exposed cells had more viable cells and a smaller cell population in the late and early apoptotic stage. Furthermore, more cells were arrested in the G1 phase upon exposure to C-ZnO NPs, which is associated with oxidative stress and DNA damage caused by ROS generation, proving its higher cytotoxicity than Ma-ZnO NPs. Similarly, time-dependent cytotoxicity and morphological alterations were observed in C- and Ma-ZnO NPs treated cells, indicating cellular damage. Furthermore, fluorescence microscopy also demonstrated a time-dependent increase in ROS formation in cells exposed to C- and Ma-ZnO NPs. In conclusion, the findings suggest that green ZnO NPs possess a favourable biocompatibility profile, exhibiting reduced cytotoxicity compared to chemically synthesized ZnO NPs on Vero cells. These results emphasize the potential of green synthesis methods for the development of safer and environmentally friendly ZnO NPs.

4.
Colloids Surf B Biointerfaces ; 241: 114015, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38878658

RESUMO

The primary emphasis of this study was on the innovative and scientifically valuable hydrothermal synthesis of MIL-101(Co) as a metal-organic framework (MOF) material. Subsequently, the CuFe2O4 was incorporated into the MOF by a reduction-precipitation technique. The SrTiO3/CuFe2O4/MIL-101(Co) composite was synthesized by using hydrothermal in situ growth process. The XRD and FESEM investigations of the SrTiO3/CuFe2O4/MIL-101(Co) composite definitively verified its crystalline structure and proved its production with exact shape and dimensions. The data indicated that Candida albicans displayed the greatest vulnerability to all three produced materials, with reported Minimum Inhibitory Concentration (MIC) values of 500 µg mL-1 for MIL-101(Co). The CuFe2O4/MIL-101(Co) compound, when produced, exhibits MIC values of 200 µg mL-1. Additionally, the combination of CuFe2O4/MIL-101(Co) with SrTiO3, shows MIC values of 50 µg mL-1. The results also indicated that the MIC values for MIL-101(Co), and CuFe2O4/MIL-101(Co) against S. aureus were 100 µg mL-1. Ultimately, SrTiO3/CuFe2O4/MIL-101(Co) exhibited identical MIC values of 50 µg mL-1 against S. aureus. The concentration of the bacterial protein was increased by adding MIL-101(Co), CuFe2O4/MIL-101(Co), and SrTiO3/CuFe2O4/MIL-101(Co). The antibacterial capabilities of the SrTiO3/CuFe2O4/MIL-101(Co) were increased after being subjected to gamma doses of 100.0 kGy. This process paves a ways for manufacturing innovation in near future.

5.
Heliyon ; 10(9): e29566, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38707390

RESUMO

The newly synthesized imidazole derivative namely, 4,5-bis[(E)-2-phenylethenyl]-1H,1'H-2,2'-biimidazole (KA1), was studied for its molecular geometry, docking studies, spectral analysis and density functional theory (DFT) studies. Experimental vibrational frequencies were compared with scaled ones. The reactivity sites were determined using average localized ionization analysis (ALIE), electron localized function (ELF), localized orbital locator (LOL), reduced density gradient (RDG), Fukui functions and frontier molecular orbital (FMO). Due to the solvent effect, a lower gas phase energy gap was observed. Through utilization of the noncovalent interaction (NCI) method, the hydrogen bond interaction, steric effect and Vander Walls interaction were investigated. Molecular docking simulations were employed to determine the specific atom inside the molecules that exhibits a preference for binding with protein. The parameters for the molecular electrostatic potential (MESP) and global reactivity descriptors were also determined. The thermodynamic characteristics were determined through calculations employing the B3LYP/cc-pVDZ basis set. Antimicrobial activity was carried out using the five different microorganisms like Escherichia coli, Streptococcus pneumoniae, Staphylococcus aureus, Klebsiella pneumoniae and Candida albicans.

6.
Heliyon ; 10(9): e30065, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38726197

RESUMO

Chilli is an indispensable food item in the daily life of humans but it is affected by many insects, so various pesticides, including spiromesifen, are applied to chilli crops to protect this crop from insect infestation. However, the use of pesticides poses environmental and health issues. These issues have raised the demand for pesticide-free chillies among consumers. The primary aim of this study was to assess the efficacy of various decontamination methods in removing spiromesifen residues from chilli fruits. A randomized block design was employed to conduct a supervised field experiment at the Rajasthan Agricultural Research Institute in Durgapura, Jaipur, India. The samples of chillies treated with pesticides are subjected to seven different homemade techniques. The samples were extracted using the QuEChERS method, known for its efficiency, affordability, simplicity, robustness, and safety. The analysis of spiromesifen residues was conducted using gas chromatography (GC) equipped with an electron capture detector (ECD), and the results were verified using gas chromatography-mass spectrometry (GC-MS). Out of several decontamination methods, the lukewarm water treatment was more effective than any other decontamination method, which led to the highest elimination of spiromesifen residue, whereas rinsing with tap water eliminates the least amount of spiromesifen residue. So, the lukewarm water treatment is a safe, cost-effective, and eco-friendly approach to remove spiromesifen residues from Chilli.

7.
Heliyon ; 10(7): e28623, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38590870

RESUMO

The (E)-4-((4-hydroxy-3-methoxy-5-nitrobenzylidene) amino) pyrimidin-2(1H)-one (C5NV) was synthesized from cytosine and 5-nitrovanilline by simple straightforward condensation reaction. The structural characteristics of the compound was determined and optimized by WB97XD/cc-pVDZ basis set. The vibrational frequencies were computed and subsequently compared to the experimental frequencies. We investiated the electronic properties of the synthesized compound in gas and solvent phases using the time-dependent density functional theory (TD-DFT) approach, and compared them to experimental values. The fluorescence study showed three different wavelengths indicating the nature of the optical material properties. Frontier molecular orbital (FMO) and molecular electrostatic potential (MEP) analyses were conducted for the title compound, and electron localized functions (ELF) and localized orbital locators (LOL) were used to identify the orbital positions of localized and delocalized atoms. Non-covalent interactions (H-bond interactions) were investigated using reduced density gradients (RDGs). The objective of the study was to determine the physical, chemical, and biological properties of the C5NV. The molecular docking study was conducted between C5NV and 2XNF protein, its lowest binding energy score is -7.92 kcal/mol.

8.
BMC Chem ; 18(1): 76, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637900

RESUMO

Nod-like receptor protein 3 (NLRP-3), is an intracellular sensor that is involved in inflammasome activation, and the aberrant expression of NLRP3 is responsible for diabetes mellitus, its complications, and many other inflammatory diseases. NLRP3 is considered a promising drug target for novel drug design. Here, a pharmacophore model was generated from the most potent inhibitor, and its validation was performed by the Gunner-Henry scoring method. The validated pharmacophore was used to screen selected compounds databases. As a result, 646 compounds were mapped on the pharmacophore model. After applying Lipinski's rule of five, 391 hits were obtained. All the hits were docked into the binding pocket of target protein. Based on docking scores and interactions with binding site residues, six compounds were selected potential hits. To check the stability of these compounds, 100 ns molecular dynamic (MD) simulations were performed. The RMSD, RMSF, DCCM and hydrogen bond analysis showed that all the six compounds formed stable complex with NLRP3. The binding free energy with the MM-PBSA approach suggested that electrostatic force, and van der Waals interactions, played a significant role in the binding pattern of these compounds. Thus, the outcomes of the current study could provide insights into the identification of new potential NLRP3 inflammasome inhibitors against diabetes and its related disorders.

9.
Front Plant Sci ; 15: 1255979, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481405

RESUMO

Background: Brassica oleracea var. botrytis is an annual or biennial herbaceous vegetable plant in the Brassicaceae family notable for its edible blossom head. A lot of effort has gone into finding defense-associated proteins in order to better understand how cauliflower and pathogens interact. Endophytes are organisms that live within the host plant and reproduce. Endophytes are bacteria and fungi that reside in plant tissues and can either help or harm the plant. Several species have aided molecular biologists and plant biotechnologists in various ways. Water is essential for a healthy cauliflower bloom. When the weather is hot, this plant dries up, and nitrogen scarcity can be detrimental to cauliflower growth. Objective: The study sought to discern plant growth promoting (PGP) compounds that can amplify drought resilience and boost productivity in cauliflower. Methods: Investigations were centered on endophytes, microorganisms existing within plant tissues. The dual role of beneficial and detrimental Agrobacterium was scrutinized, particularly emphasizing the ethylene precursor compound, 1-amino-cyclopropane-1-carboxylic acid (ACCA). Results: ACCA possessed salient PGP traits, particularly demonstrating a pronounced enhancement of drought resistance in cauliflower plants. Specifically, during the pivotal marketable curd maturity phase, which necessitates defense against various threats, ACCA showcased a binding energy of -8.74 kcal/mol. Conclusion: ACCA holds a significant promise in agricultural productivity, with its potential to boost drought resistance and cauliflower yield. This could be particularly impactful for regions grappling with high temperatures and possible nitrogen shortages. Future research should explore ACCA's performance under diverse environmental settings and its applicability in other crops.

10.
Exp Gerontol ; 188: 112389, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38432575

RESUMO

Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.


Assuntos
Quempferóis , Síndrome do Desconforto Respiratório , Humanos , Quempferóis/farmacologia , Quempferóis/uso terapêutico , Quempferóis/química , Fosfatidilinositol 3-Quinases , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Envelhecimento , Síndrome do Desconforto Respiratório/tratamento farmacológico
12.
Front Pharmacol ; 15: 1331062, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38384298

RESUMO

There are two main ways to discover or design small drug molecules. The first involves fine-tuning existing molecules or commercially successful drugs through quantitative structure-activity relationships and virtual screening. The second approach involves generating new molecules through de novo drug design or inverse quantitative structure-activity relationship. Both methods aim to get a drug molecule with the best pharmacokinetic and pharmacodynamic profiles. However, bringing a new drug to market is an expensive and time-consuming endeavor, with the average cost being estimated at around $2.5 billion. One of the biggest challenges is screening the vast number of potential drug candidates to find one that is both safe and effective. The development of artificial intelligence in recent years has been phenomenal, ushering in a revolution in many fields. The field of pharmaceutical sciences has also significantly benefited from multiple applications of artificial intelligence, especially drug discovery projects. Artificial intelligence models are finding use in molecular property prediction, molecule generation, virtual screening, synthesis planning, repurposing, among others. Lately, generative artificial intelligence has gained popularity across domains for its ability to generate entirely new data, such as images, sentences, audios, videos, novel chemical molecules, etc. Generative artificial intelligence has also delivered promising results in drug discovery and development. This review article delves into the fundamentals and framework of various generative artificial intelligence models in the context of drug discovery via de novo drug design approach. Various basic and advanced models have been discussed, along with their recent applications. The review also explores recent examples and advances in the generative artificial intelligence approach, as well as the challenges and ongoing efforts to fully harness the potential of generative artificial intelligence in generating novel drug molecules in a faster and more affordable manner. Some clinical-level assets generated form generative artificial intelligence have also been discussed in this review to show the ever-increasing application of artificial intelligence in drug discovery through commercial partnerships.

13.
Heliyon ; 10(2): e24728, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38312566

RESUMO

The study examined various properties of synthesized copolyesters PESC and PPSC. Inherent viscosities of the copolyesters, measured in 1,4-dioxane at 32 °C, were 0.65 dL/g for PESC and 0.73 dL/g for PPSC. Fourier-Transform Infrared Spectroscopy (FT-IR) revealed distinct absorption bands associated with ester carbonyl stretching, C-H bending vibration, C-H group symmetry stretching, and C-O stretching vibrations. 1H and 13C Nuclear magnetic Resonance (NMR) spectroscopy were used to identify specific protons and carbon groups in the polymer chain, revealing the molecular structure of the copolyesters. Differential Scanning Calorimetry (DSC) identified the glass transition, melting, and decomposition temperatures for both copolyesters, indicating variations in the crystalline nature of the copolymers. XRD Spectral studies further elaborated on the crystalline nature, indicating that PPSC is less amorphous than PESC. Biodegradation analysis showed that PESC degrades more quickly than PPSC, with degradation decreasing as the number of methylene groups increase. Scanning Electron Microscopy (SEM) images depicted the surface morphology of the copolyesters before and after degradation, revealing a more roughened surface with pits post-degradation. These findings provide comprehensive insights into the structural and degradable properties of PESC and PPSC copolyesters.

14.
Int J Pharm X ; 7: 100231, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38322276

RESUMO

Over the last two decades, researchers have paid more attention to magnetic nanosystems due to their wide application in diverse fields. The metal nanomaterials' antimicrobial and biocidal properties make them an essential nanosystem for biomedical applications. Moreover, the magnetic nanosystems could have also been used for diagnosis and treatment because of their magnetic, optical, and fluorescence properties. Superparamagnetic iron oxide nanoparticles (SPIONs) and quantum dots (QDs) are the most widely used magnetic nanosystems prepared by a simple process. By surface modification, researchers have recently been working on conjugating metals like silica, copper, and gold with magnetic nanosystems. This hybridization of the nanosystems modifies the structural characteristics of the nanomaterials and helps to improve their efficacy for targeted drug and gene delivery. The hybridization of metals with various nanomaterials like micelles, cubosomes, liposomes, and polymeric nanomaterials is gaining more interest due to their nanometer size range and nontoxic, biocompatible nature. Moreover, they have good injectability and higher targeting ability by accumulation at the target site by application of an external magnetic field. The present article discussed the magnetic nanosystem in more detail regarding their structure, properties, interaction with the biological system, and diagnostic applications.

15.
Environ Res ; 247: 118127, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220075

RESUMO

Remediating inorganic pollutants is an important part of protecting coastal ecosystems, which are especially at risk from the effects of climate change. Different Phragmites karka (Retz) Trin. ex Steud ecotypes were gathered from a variety of environments, and their abilities to remove inorganic contaminants from coastal wetlands were assessed. The goal is to learn how these ecotypes process innovation might help reduce the negative impacts of climate change on coastal environments. The Phragmites karka ecotype E1, found in a coastal environment in Ichkera that was impacted by residential wastewater, has higher biomass production and photosynthetic pigment content than the Phragmites karka ecotypes E2 (Kalsh) and E3 (Gatwala). Osmoprotectant accumulation was similar across ecotypes, suggesting that all were able to successfully adapt to polluted marine environments. The levels of both total soluble sugars and proteins were highest in E2. The amount of glycine betaine (GB) rose across the board, with the highest levels being found in the E3 ecotype. The study also demonstrated that differing coastal habitats significantly influenced the antioxidant activity of all ecotypes, with E1 displaying the lowest superoxide dismutase (SOD) activity, while E2 exhibited the lowest peroxidase (POD) and catalase (CAT) activities. Significant morphological changes were evident in E3, such as an expansion of the phloem, vascular bundle, and metaxylem cell areas. When compared to the E3 ecotype, the E1 and E2 ecotypes showed striking improvements across the board in leaf anatomy. Mechanistic links between architectural and physio-biochemical alterations are crucial to the ecological survival of different ecotypes of Phragmites karka in coastal environments affected by climate change. Their robustness and capacity to reduce pollution can help coastal ecosystems endure in the face of persistent climate change.


Assuntos
Ecossistema , Ecótipo , Mudança Climática , Poaceae/química , Poaceae/metabolismo , Biomassa , Antioxidantes/metabolismo
16.
BMC Plant Biol ; 24(1): 63, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38262953

RESUMO

Salinity stress adversely affects agricultural productivity by disrupting water uptake, causing nutrient imbalances, and leading to ion toxicity. Excessive salts in the soil hinder crops root growth and damage cellular functions, reducing photosynthetic capacity and inducing oxidative stress. Stomatal closure further limits carbon dioxide uptake that negatively impact plant growth. To ensure sustainable agriculture in salt-affected regions, it is essential to implement strategies like using biofertilizers (e.g. arbuscular mycorrhizae fungi = AMF) and activated carbon biochar. Both amendments can potentially mitigate the salinity stress by regulating antioxidants, gas exchange attributes and chlorophyll contents. The current study aims to explore the effect of EDTA-chelated biochar (ECB) with and without AMF on maize growth under salinity stress. Five levels of ECB (0, 0.2, 0.4, 0.6 and 0.8%) were applied, with and without AMF. Results showed that 0.8ECB + AMF caused significant enhancement in shoot length (~ 22%), shoot fresh weight (~ 15%), shoot dry weight (~ 51%), root length (~ 46%), root fresh weight (~ 26%), root dry weight (~ 27%) over the control (NoAMF + 0ECB). A significant enhancement in chlorophyll a, chlorophyll b and total chlorophyll content, photosynthetic rate, transpiration rate and stomatal conductance was also observed in the condition 0.8ECB + AMF relative to control (NoAMF + 0ECB), further supporting the efficacy of such a combined treatment. Our results suggest that adding 0.8% ECB in soil with AMF inoculation on maize seeds can enhance maize production in saline soils, possibly via improvement in antioxidant activity, chlorophyll contents, gas exchange and morphological attributes.


Assuntos
Micorrizas , Antioxidantes , Zea mays , Carvão Vegetal , Ácido Edético , Clorofila A , Estresse Salino , Clorofila , Solo
17.
Mol Biotechnol ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38195817

RESUMO

Solid waste generation is a huge contributor to environmental pollution issues, and food wastes are prominent in this category due to their large generation on a day-to-day basis. Thus, the settlement of daily food waste is one of the major constraints and needs innovative manufacturing sheme to valorize solid waste in sustainable manner. Moreover, these food wastes are rich in organic content, which has promising scope for their value-added products. In the present study, raw mango seed waste has been biotransformed to produce bacterial hydrolytic enzymes as feedstock. On investigating the impact of substrate, the highest bacterial cellulase production was recorded to be 18 IU/gds FP (filter paper) in 24 h of microbial incubation at 5 g of substrate in solid-state fermentation (SSF). Furthermore, at 40 °C and pH 6.0, 23 IU/gds FP enzyme could be produced in 24 h of SSF. Beside this, on comparing the influence of inorganic and organic nitrogen sources, urea has been found to provide better cellulase production, which yielded 28 IU/gds FP in 24 h of incubation, along with 77 IU/gds BG (ß-glucosidase) and 89 IU/gds EG (endoglucanase). On the other hand, Tween-40 and Tween-80, two different surfactants, were employed at a 1.0% concentration for 24 h of incubation. It was noticed that Tween-80 showed complete enzyme activity at 24 h, which was found to be relatively superior to that of Tween-40. This study may have potential utility in enzyme production using mango seed as a food waste for various industrial applications.

18.
J Environ Manage ; 353: 120182, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38278112

RESUMO

Randomly collected food waste results in inaccurate experimental data with poor reproducibility for composting. This study investigated standard food waste samples as replacements for randomly collected food waste. A response surface methodology was utilised to analyse data from a 28-day compost process optimisation experiment using collected food waste, and the optimal combination of composting parameters was derived. Experiments using different standard food waste samples (high oil and salt, high oil and sugar, balanced diet, and vegetarian) were conducted for 28 days under optimal conditions. The ranking of differences between the standard samples and collected food waste was vegetarian > balanced diet > high oil and sugar > high oil and salt. Statistical analysis indicated t-tests for increased oil and salt samples and collected food waste were not significant, and Cohen's d effect values were minimal. High oil and salt samples can be used as replacements for collected food waste in composting experiments.


Assuntos
Compostagem , Eliminação de Resíduos , Eliminação de Resíduos/métodos , Perda e Desperdício de Alimentos , Alimentos , Estudos de Viabilidade , Reprodutibilidade dos Testes , Solo , Cloreto de Sódio , Açúcares
19.
Glob Chall ; 8(1): 2300187, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38223890

RESUMO

Green nanotechnology, an emerging field, offers economic and social benefits while minimizing environmental impact. Nanoparticles, pivotal in medicine, pharmaceuticals, and agriculture, are now sourced from green plants and microorganisms, overcoming limitations of chemically synthesized ones. In agriculture, these green-made nanoparticles find use in fertilizers, insecticides, pesticides, and fungicides. Nanofertilizers curtail mineral losses, bolster yields, and foster agricultural progress. Their biological production, preferred for environmental friendliness and high purity, is cost-effective and efficient. Biosensors aid early disease detection, ensuring food security and sustainable farming by reducing excessive pesticide use. This eco-friendly approach harnesses natural phytochemicals to boost crop productivity. This review highlights recent strides in green nanotechnology, showcasing how green-synthesized nanomaterials elevate crop quality, combat plant pathogens, and manage diseases and stress. These advancements pave the way for sustainable crop production systems in the future.

20.
Heliyon ; 9(11): e22128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38053868

RESUMO

Incessant utilization of chemical fertilizers leads to the accumulation of minerals in the soil, rendering them unavailable to plants. Unaware of the mineral reserves present in the soil, farming communities employ chemical fertilizers once during each cultivation, a practice that causes elevated levels of insoluble minerals within the soil. The use of biofertilizers on the other hand, reduces the impact of chemical fertilizers through the action of microorganisms in the product, which dissolves minerals and makes them readily available for plant uptake, helping to create a sustainable environment for continuous agricultural production. In the current investigation, a field trial employing Arachis hypogaea L was conducted to evaluate the ability of Pseudomonas aeruginosa to enhance plant growth and development by solubilizing minerals present in the soil (such as zinc and phosphorus). A Randomized Complete Block Design (RCBD) included five different treatments as T1: Un inoculated Control; T2: Seeds treated with a liquid formulation of P. aeruginosa; T3: Seeds treated with a liquid formulation of P. aeruginosa and the soil amended with organic manure (farmyard); T4: Soil amended with organic manure (farmyard) alone; T5: Seeds treated with lignite (solid) based formulation of P. aeruginosa were used for the study. Efficacy was determined based on the plant's morphological characters and mineral contents (Zn and P) of plants and soil. Survival of P. aeruginosa in the field was validated using Antibiotic Intrinsic patterns (AIP). The results indicated that the combination treatment of P. aeruginosa liquid formulation and organic fertilizer (farmyard) (T3) produced the highest biometric parameters and mineral (Zn and P) content of the groundnut plants and the soil. This outcome is likely attributed to the mineral solubilizing capability of P. aeruginosa. Furthermore, the presence of farmyard manure increased the metabolic activity of P. aeruginosa by inducing its heterotrophic activity, leading to higher mineral content in T3 soil compared to other soil treatments. The AIP data confirmed the presence of the applied liquid inoculant by exhibiting a similar intrinsic pattern between the in vitro isolate and the isolate obtained from the fields. In summary, the Zn and P solubilization ability of P. aeruginosa facilitates the conversion of soil-unavailable mineral form into a form accessible to plants. It further proposes the utilization of the liquid formulation of P. aeruginosa as a viable solution to mitigate the challenges linked to solid-based biofertilizers and the reliance on mineral-based chemical fertilizers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA