Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e2402412, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38767270

RESUMO

Despite the remarkable efficiency of perovskite solar cells (PSCs), long-term stability remains the primary barrier to their commercialization. The prospect of enhancing stability by substituting organic transport layers with suitable inorganic compounds, particularly Cu-based inorganic hole-transport materials (HTMs), holds promise due to their high valence band maximum (VBM) aligning with perovskite characteristics. This review assesses the advantages and disadvantages of these five types of Cu-based HTMs. Although Cu-based binary oxides and chalcogenides face narrow bandgap issues, the "chemical modulation of the valence band" (CMVB) strategy has successfully broadened the bandgap for Cu-based ternary oxides and chalcogenides. However, Cu-based ternary oxides encounter challenges with low mobility, and Cu-based ternary chalcogenides face mismatches in VBM alignment with perovskites. Cu-based binary halides, especially CuI, exhibit excellent properties such as wider bandgap, high mobility, and defect tolerance, but their stability remains a concern. These limitations of single anion compounds are insightfully discussed, offering solutions from the perspective of practical application. Future research can focus on Cu-based composite anion compounds, which merge the advantages of single anion compounds. Additionally, mixed-cation chalcogenides such as CuxM1-xS enable the customization of HTM properties by selecting and adjusting the proportions of cation M.

2.
Mater Horiz ; 10(5): 1806-1815, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-36857680

RESUMO

Photoelectrochemical water splitting is one of the sustainable routes to renewable hydrogen production. One of the challenges to deploying photoelectrochemical (PEC) based electrolyzers is the difficulty in the effective capture of solar radiation as the illumination angle changes throughout the day. Herein, we demonstrate a method for the angle-independent capture of solar irradiation by using transparent 3 dimensional (3D) lattice structures as the photoanode in PEC water splitting. The transparent 3D lattice structures were fabricated by 3D printing a silica sol-gel followed by aging and sintering. These transparent 3D lattice structures were coated with a conductive indium tin oxide (ITO) thin film and a Mo-doped BiVO4 photoanode thin film by dip coating. The sheet resistance of the conductive lattice structures can reach as low as 340 Ohms per sq for ∼82% optical transmission. The 3D lattice structures furnished large volumetric current densities of 1.39 mA cm-3 which is about 2.4 times higher than a flat glass substrate (0.58 mA cm-3) at 1.23 V and 1.5 G illumination. Further, the 3D lattice structures showed no significant loss in performance due to a change in the angle of illumination, whereas the performance of the flat glass substrate was significantly affected. This work opens a new paradigm for more effective capture of solar radiation that will increase the solar to energy conversion efficiency.

3.
Small ; 19(2): e2204520, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354178

RESUMO

The discovery of more efficient and stable catalysts for oxygen evolution reaction (OER) is vital in improving the efficiency of renewable energy generation devices. Given the large numbers of possible binary and ternary metal oxide OER catalysts, high-throughput methods are necessary to accelerate the rate of discovery. Herein, Mn-based spinel oxide, Fe10 Co40 Mn50 O, is identified for the first time using high-throughput methods demonstrating remarkable catalytic activity (overpotential of 310 mV on fluorine-doped tin oxide (FTO) substrate and 237 mV on Ni foam at 10 mA cm-2 ). Using a combination of soft X-ray absorption spectroscopy and electrochemical measurements, the high catalytic activity is attributed to 1) the formation of multiple active sites in different geometric sites, tetrahedral and octahedral sites; and 2) the formation of active oxyhydroxide phase due to the strong interaction of Co2+ and Fe3+ . Structural and surface characterizations after OER show preservation of Fe10 Co40 Mn50 O surface structure highlighting its durability against irreversible redox damage on the catalytic surface. This work demonstrates the use of a high-throughput approach for the rapid identification of a new catalyst, provides a deeper understanding of catalyst design, and addresses the urgent need for a better and stable catalyst to target greener fuel.


Assuntos
Ensaios de Triagem em Larga Escala , Óxidos , Domínio Catalítico , Oxigênio
4.
ACS Appl Mater Interfaces ; 14(9): 11339-11349, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35201744

RESUMO

Semitransparent hybrid perovskites open up applications in windows and building-integrated photovoltaics. One way to achieve semitransparency is by thinning the perovskite film, which has several benefits such as cost efficiency and reduction of lead. However, this will result in a reduced light absorbance; therefore, to compromise this loss, it is possible to incorporate plasmonic metal nanostructures, which can trap incident light and locally amplify the electromagnetic field around the resonance peaks. Here, Au nanorods (NRs), which are not detrimental for the perovskite and whose resonance peak overlaps with the perovskite band gap, are deposited on top of a thin (∼200 nm) semitransparent perovskite film. These semitransparent perovskite solar cells with 27% average visible transparency show enhancement in the open-circuit voltage (Voc) and fill factor, demonstrating 13.7% efficiency (improved by ∼6% compared to reference cells). Space-charge limited current, electrochemical impedance spectroscopy (EIS), and Mott-Schottky analyses shed more light on the trap density, nonradiative recombination, and defect density in these Au NR post-treated semitransparent perovskite solar cells. Furthermore, Au NR implementation enhances the stability of the solar cell under ambient conditions. These findings show the ability to compensate for the light harvesting of semitransparent perovskites using the plasmonic effect.

5.
Adv Mater ; 33(44): e2104346, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34510590

RESUMO

Antimony sulfoselenide (Sb2 (S,Se)3 ) is a promising photoabsorber for stable and high efficiency thin film photovoltaics (PV). The unique quasi-1D (Q1D) crystal structure gives Sb2 (S,Se)3 intriguing anisotropic optoelectronic properties, which intrinsically require the optimization of crystal growth orientation, especially for electronic devices with vertical charge transport such as solar cells. Although the efficiency of Sb2 (S,Se)3 solar cells has been improved greatly through optimizing the material quality, the fundamental issue of crystal orientation control in polycrystalline films remains unsolved, resulting in charge carrier recombination losses in the device. Herein, the epitaxial growth of vertically-oriented Sb2 (S,Se)3 film on hexagonal CdS is successfully realized via a solution-based synergistic crystal growth process. The crystallographic orientation relationship between Sb2 (S,Se)3 light absorber and the CdS substrate has been rigorously investigated. The best performing Sb2 (S,Se)3 solar cell shows a high power conversion efficiency of 9.2% owing to the faster charge transport in the bulk and the efficient charge extraction across the heterojunction. This study points to a new direction to control the crystal growth of mixed-anion Sb2 (S,Se)3 , which is crucial to achieve high efficiency solar cells based on antimony chalcogenides with low dimensionality.

6.
J Phys Chem Lett ; 11(19): 8189-8194, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32893636

RESUMO

A hybrid organic-inorganic perovskite in a diode structure can lead to multifunctional device phenomena exhibiting both a high power conversion efficiency (PCE) of a solar cell and strong electroluminescence (EL) efficiency. Nonradiative losses in such multifunctional devices lead to an open circuit voltage (Voc) deficit, which is a limiting factor for pushing the efficiency toward the Shockley-Queisser limit. In this work, we analyze and quantify the radiative limit of Voc in a perovskite solar cell as a function of its absorber thickness. We correlate PCE and EL efficiency at varying thicknesses to understand the limiting factors for a high Voc. With a certain increase in perovskite thickness, PCE improves but EL efficiency is compromised and vice versa. Thus, correlating these two figures of merit of a solar cell guides the light management strategy together with minimizing nonradiative losses. The results demonstrate that maximizing absorption and emission processes remains paramount for optimizing devices.

7.
ACS Appl Mater Interfaces ; 11(29): 25824-25832, 2019 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-31251557

RESUMO

High nonradiative recombination, low diffusion length and band tailing are often associated with a large open circuit voltage deficit, which results in low efficiency of Cu2ZnSnS4 (CZTS) solar cells. Recently, cation substitution in CZTS has gained interest as a plausible solution to suppress these issues. However, the common substitutes, Ag and Cd, are not ideal due to their scarcity and toxicity. Other transition-metal candidates (e.g., Mn, Fe, Co, or Ni) are multivalent, which may form harmful deep-level defects. Magnesium, as one of the viable substitutes, does not have these issues, as it is very stable in +2 oxidation state, abundant, and nontoxic. In this study, we investigate the effect of Mg incorporation in sulfur-based Cu2ZnSnS4 to form Cu2MgxZn1-xSnS4 by varying x from 0.0 to 1.0. These films were fabricated by chemical spray pyrolysis and the subsequent sulfurization process. At a high Mg content, it is found that Mg does not replace Zn to form a quaternary compound, which leads to the appearance of the secondary phases in the sample. However, a low Mg content (Cu2Mg0.05Zn0.95SnS4) improves the power conversion efficiency from 5.10% (CZTS) to 6.73%. The improvement is correlated to the better carrier-transport properties, as shown by a lesser amount of the ZnS secondary phase, higher carrier mobility, and shallower acceptor defects level. In addition, the Cu2Mg0.05Zn0.95SnS4 device also shows better charge-collection property based on the higher fill factor and quantum efficiency despite having lower depletion width. Therefore, we believe that the addition of a small amount of Mg is another viable route to improve the performance of the CZTS solar cell.

8.
ChemSusChem ; 12(9): 2022-2028, 2019 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-30246933

RESUMO

Solar water oxidation is considered as a promising method for efficient utilization of solar energy and bismuth vanadate (BiVO4 ) is a potential photoanode. Catalyst loading on BiVO4 is often used to tackle the limitations of charge recombination and sluggish kinetics. In this study, amorphous nickel oxide (NiOx ) is loaded onto Mo-doped BiVO4 by photochemical metal-organic deposition method. The resulting NiOx /Mo:BiVO4 photoanodes demonstrate a two-fold improvement in photocurrent density (2.44 mA cm-2 ) at 1.23 V versus reversible hydrogen electrode (RHE) compared with the uncatalyzed samples. After NiOx modification the charge-separation and charge-transfer efficiencies improve significantly across the entire potential range. It is further elucidated by open-circuit photovoltage (OCP), time-resolved-microwave conductivity (TRMC), and rapid-scan voltammetry (RSV) measurements that NiOx modification induces larger band bending and promotes efficient charge transfer on the surface of BiVO4 . This work provides insight into designing BiVO4 -catalyst assemblies by using a simple surface-modification route for efficient solar water oxidation.

9.
Adv Mater ; : e1802080, 2018 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-29978516

RESUMO

Creating defect tolerant lead-free halide perovskites is the major challenge for development of high-performance photovoltaics with nontoxic absorbers. Few compounds of Sn, Sb, or Bi possess ns2 electronic configuration similar to lead, but their poor photovoltaic performances inspire us to evaluate other factors influencing defect tolerance properties. The effect of heavy metal cation (Bi) transmutation and ionic migration on the defects and carrier properties in a 2D layered perovskite (NH4 )3 (Sb(1-x) Bix )2 I9 system is investigated. It is shown, for the first time, the possibility of engineering the carriers in halide perovskites via metal cation transmutation to successfully form intrinsic p- and n-type materials. It is also shown that this material possesses a direct-indirect bandgap enabling high absorption coefficient, extended carrier lifetimes >100 ns, and low trap densities similar to lead halide perovskites. This study also demonstrates the possibility of electrical poling to induce switchable photovoltaic effect without additional electron and hole transport layers.

10.
ACS Omega ; 3(3): 2724-2734, 2018 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31458550

RESUMO

In this paper, the synergistic effect of porosity and gradient of Mo doping in BiVO4 photoanodes for improving charge separation and solar water oxidation performance is reported. A simple solution-based, three-step fabrication route was adopted using a layer-by-layer assembling technique. A water oxidation photocurrent of ∼1.73 mA cm-2 at 1.23 V vs reversible hydrogen electrode in neutral pH was achieved without using any sacrificial agent or electrocatalyst. The gradient Mo doping was found to enhance charge separation efficiency, which was verified through a shift in the water oxidation onset potential cathodically to ∼200 mV. In addition, these results were further confirmed by a higher open-circuit photovoltage and flat band potential investigations. This was attributed to the surface energetics played by gradient Mo doping that served as the driving force in reducing the onset potential for water oxidation. The coupled effect of enhanced light absorption and charge separation was revealed by monitoring the difference in decoupling the water oxidation efficiencies of porous and planar Mo:BiVO4 photoanodes. This study demonstrated an improvement in the catalytic and charge separation efficiency of Mo:BiVO4 photoanodes due to the introduction of porous structured homojunctions in a gradient manner. The simple synthesis approach adopted in the present study can be utilized and scaled up in making efficient photoanodes for competent solar water oxidation cells.

11.
Sci Rep ; 7(1): 1350, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28465553

RESUMO

We have investigated the impact of Cu2ZnSnS4-Molybdenum (Mo) interface quality on the performance of sputter-grown Cu2ZnSnS4 (CZTS) solar cell. Thin film CZTS was deposited by sputter deposition technique using stoichiometry quaternary CZTS target. Formation of molybdenum sulphide (MoSx) interfacial layer is observed in sputter grown CZTS films after sulphurization. Thickness of MoSx layer is found ~142 nm when CZTS layer (550 nm thick) is sulphurized at 600 °C. Thickness of MoSx layer significantly increased to ~240 nm in case of thicker CZTS layer (650 nm) under similar sulphurization condition. We also observe that high temperature (600 °C) annealing suppress the elemental impurities (Cu, Zn, Sn) at interfacial layer. The amount of out-diffused Mo significantly varies with the change in sulphurization temperature. The out-diffused Mo into CZTS layer and reconstructed interfacial layer remarkably decreases series resistance and increases shunt resistance of the solar cell. The overall efficiency of the solar cell is improved by nearly five times when 600 °C sulphurized CZTS layer is applied in place of 500 °C sulphurized layer. Molybdenum and sulphur diffusion reconstruct the interface layer during heat treatment and play the major role in charge carrier dynamics of a photovoltaic device.

12.
ChemSusChem ; 10(11): 2449-2456, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28371520

RESUMO

Photoelectrochemical (PEC) cells are attractive for storing solar energy in chemical bonds through cleaving of water into oxygen and hydrogen. Although hematite (α-Fe2 O3 ) is a promising photoanode material owing to its chemical stability, suitable band gap, low cost, and environmental friendliness, its performance is limited by short carrier lifetimes, poor conductivity, and sluggish kinetics leading to low (solar-to-hydrogen) STH efficiency. Herein, we combine solution-based hydrothermal growth and a post-growth surface exposure through atomic layer deposition (ALD) to show a dramatic enhancement of the efficiency for water photolysis. These modified photoanodes show a high photocurrent of 3.12 mA cm-2 at 1.23 V versus RHE, (>5 times higher than Fe2 O3 ) and a plateau photocurrent of 4.5 mA cm-2 at 1.5 V versus RHE. We demonstrate that these photoanodes in tandem with a CH3 NH3 PbI3 perovskite solar cell achieves overall unassisted water splitting with an STH conversion efficiency of 3.4 %, constituting a new benchmark for hematite-based tandem systems.


Assuntos
Compostos Férricos/química , Fotólise , Energia Solar , Água/química , Compostos de Cálcio , Eletroquímica/métodos , Óxidos , Titânio
13.
Phys Chem Chem Phys ; 18(44): 30370-30378, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27782252

RESUMO

Hematite (Fe2O3) nanorods on FTO substrates have been proven to be promising photoanodes for solar fuel production but only with high temperature thermal activation which allows diffusion of tin (Sn) ions from FTO, eventually enhancing their conductivity. Hence, there is a trade-off between the conductivity of Fe2O3, and the degradation of FTO occurring at high annealing temperatures (>750 °C). Here, we present a comprehensive study on undoped Fe2O3 nanorods under front and back illumination to find the optimum annealing temperature. Bulk/surface charge transport efficiency analysis demonstrates minimum bulk recombination indicating overall high quality crystalline Fe2O3 and the preservation of FTO conductivity. Surface recombination is further improved by growing a TiOx overlayer, which improves the photocurrent density from 0.2 mA cm-2 (backside) to 1.2 mA cm-2 under front side and 0.8 mA cm-2 under backside illumination. It is evident from this study that the performance of undoped and unpassivated hematite nanorods is limited by electron transport, whereas that of doped/passivated hematite nanorods is limited by hole transport.

14.
Nanotechnology ; 27(20): 20LT01, 2016 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-27070991

RESUMO

In this work, a wire-shaped perovskite solar cell based on TiO2 nanotube (TNT) arrays is demonstrated for the first time by integrating a perovskite absorber on TNT-coated Ti wire. Anodization was adopted for the conformal growth of TNTs on Ti wire, together with the simultaneous formation of a compact TiO2 layer. A sequential step dipping process is employed to produce a uniform and compact perovskite layer on top of TNTs with conformal coverage as the efficient light absorber. Transparent carbon nanotube film is wrapped around Ti wire as the hole collector and counter electrode. The integrated perovskite solar cell wire by facile fabrication approaches shows a promising future in portable and wearable textile electronics.

15.
Nanoscale ; 8(7): 4181-93, 2016 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-26830152

RESUMO

The stunning rise of methylammonium lead iodide perovskite material as a light harvesting material in recent years has drawn much attention in the photovoltaic community. Here, we investigated in detail the uniform and void-free perovskite capping layer in the mesoscopic perovskite devices and found it to play a critical role in determining device performance and charge recombination process. Compared to the rough surface with voids of the perovskite layer, surface of the perovskite capping layer obtained from sequential deposition process is much more uniform with less void formation and distribution within the TiO2 mesoscopic scaffold is more homogeneous, leading to much improved photovoltaic parameters of the devices. The impact of void free perovskite capping layer surface on the charge recombination processes within the mesoscopic perovskite solar cells is further scrutinized via charge extraction measurement. Modulation of precursor solution concentrations in order to further improve the perovskite layer surface morphology leads to higher efficiency and lower charge recombination rates. Inhibited charge recombination in these solar cells also matches with the higher charge density and slower photovoltage decay profiles measured.

16.
Nano Lett ; 16(3): 1925-32, 2016 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-26855162

RESUMO

P-type transparent conducting films of nanocrystalline (CuS)x:(ZnS)1-x were synthesized by facile and low-cost chemical bath deposition. Wide angle X-ray scattering (WAXS) and high resolution transmission electron microscopy (HRTEM) were used to evaluate the nanocomposite structure, which consists of sub-5 nm crystallites of sphalerite ZnS and covellite CuS. Film transparency can be controlled by tuning the size of the nanocrystallites, which is achieved by adjusting the concentration of the complexing agent during growth; optimal films have optical transmission above 70% in the visible range of the spectrum. The hole conductivity increases with the fraction of the covellite phase and can be as high as 1000 S cm(-1), which is higher than most reported p-type transparent materials and approaches that of n-type transparent materials such as indium tin oxide (ITO) and aluminum doped zinc oxide (AZO) synthesized at a similar temperature. Heterojunction p-(CuS)x:(ZnS)1-x/n-Si solar cells were fabricated with the nanocomposite film serving as a hole-selective contact. Under 1 sun illumination, an open circuit voltage of 535 mV was observed. This value compares favorably to other emerging heterojunction Si solar cells which use a low temperature process to fabricate the contact, such as single-walled carbon nanotube/Si (370-530 mV) and graphene/Si (360-552 mV).

17.
Nanoscale ; 8(12): 6352-60, 2016 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-26646241

RESUMO

A high open circuit voltage (V(OC)) close to 1.4 V under AM 1.5, 100 mW cm(-2) conditions is achieved when carbon nanotubes (CNTs) are used as a hole conductor in methyl ammonium lead bromide (MAPbBr3) perovskite solar cells. Time-resolved photoluminescence and impedance spectroscopy investigations suggest that the observed high V(OC) is a result of the better charge extraction and lower recombination of the CNT hole conductor. Tandem solar cells with all perovskite absorbers are demonstrated with a MAPbBr3/CNT top cell and a MAPbI3 bottom cell, achieving a V(OC) of 2.24 V in series connection. The semitransparent and high voltage MAPbBr3/CNT solar cells show great potential for applications in solar cell windows, tandem solar cells and solar driven water splitting.

18.
Materials (Basel) ; 9(5)2016 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-28773473

RESUMO

Porous tungsten oxide/copper tungstate (WO3/CuWO4) composite thin films were fabricated via a facile in situ conversion method, with a polymer templating strategy. Copper nitrate (Cu(NO3)2) solution with the copolymer surfactant Pluronic®F-127 (Sigma-Aldrich, St. Louis, MO, USA, generic name, poloxamer 407) was loaded onto WO3 substrates by programmed dip coating, followed by heat treatment in air at 550 °C. The Cu2+ reacted with the WO3 substrate to form the CuWO4 compound. The composite WO3/CuWO4 thin films demonstrated improved photoelectrochemical (PEC) performance over WO3 and CuWO4 single phase photoanodes. The factors of light absorption and charge separation efficiency of the composite and two single phase films were investigated to understand the reasons for the PEC enhancement of WO3/CuWO4 composite thin films. The photocurrent was generated from water splitting as confirmed by hydrogen and oxygen gas evolution, and Faradic efficiency was calculated based on the amount of H2 produced. This work provides a low-cost and controllable method to prepare WO3-metal tungstate composite thin films, and also helps to deepen the understanding of charge transfer in WO3/CuWO4 heterojunction.

19.
ChemSusChem ; 8(20): 3504-11, 2015 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-26376602

RESUMO

Kesterite Cu2 ZnSn(S,Se)4 (CZTSSe) is obtained using a facile precursor-solution method followed by selenization. Power-conversion efficiency of 6.0 % is achieved and further improved to 8.2 % after doping the absorber with 0.5 mol % Sb. XRD and Raman spectroscopy show similar characteristics for the undoped and doped CZTSSe. Increasing the Sb concentration increases the grain size and lowers the series resistance. However, further Sb doping beyond 0.5 mol % degrades device performance due to lower open-circuit voltage (and therefore lower fill factor). The effect of Sb doping and the doping concentration are investigated by power-dependent and temperature-dependent photoluminescence studies, revealing that trap density is significant reduced with 0.5 mol % Sb doping. Additional doping beyond 0.5 mol % creates more defects that quench the photoexcited carriers and decrease the open-circuit voltage.


Assuntos
Antimônio/química , Fontes de Energia Elétrica , Etilenoglicóis/química , Cobre/química , Selênio/química , Energia Solar , Soluções , Sulfetos/química , Estanho/química , Zinco/química
20.
ACS Appl Mater Interfaces ; 7(31): 16960-6, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26192330

RESUMO

Ultrathin TiO2 is deposited on conventional hydrothermal grown hematite nanorod arrays by atomic layer deposition (ALD). Significant photoelectrochemical water oxidation performance improvement is observed when the ALD TiO2-treated samples are annealed at 650 °C or higher temperatures. The electrochemical impedance spectroscopy (EIS) study shows a surface trap-mediated charge transfer process exists at the hematite-electrolyte interface. Thus, one possible reason for the improvement could be the increased surface states at the hematite surface, which leads to better charge separation, less electron-hole recombination, and hence, greater improvement of photocurrent. Our Raman study shows the increase in surface defects on the ALD TiO2-coated hematite sample after being annealed at 650 °C or higher temperatures. A photocurrent of 1.9 mA cm(-2) at 1.23 V (vs RHE) with a maximum of 2.5 mA cm(-2) at 1.8 V (vs RHE) in 1 M NaOH under AM 1.5 simulated solar illumination is achieved in optimized deposition and annealing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...