Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2303897, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38452274

RESUMO

Epidemics caused by multiple viruses continue to emerge, which have brought a terrible impact on human society. Identification of viral infections with high sensitivity and portability is of significant importance for the screening and management of diseases caused by viruses. Herein, a microfluidic chip (MFC)-assisted upconversion luminescence biosensing platform is designed and fabricated for point-of-care virus detection. Upconversion nanoparticles with excellent stability are successfully synthesized as luminescent agents for optical signal generation in the portable virus diagnostic platform. The relevant investigation results illustrate that the MFC-assisted virus diagnostic platform possesses outstanding performance such as good integration, high sensitivity (1.12 pg mL-1 ), ease of use, and portability. In addition, clinical sample test result verifies its more prominent virus diagnostic properties than commercially available rapid test strips. All of these thrilling capabilities imply that the designed portable virus diagnostic platform has great potential for future virus detection applications.

2.
Biosens Bioelectron ; 222: 114987, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36495722

RESUMO

Accurate COVID-19 screening via molecular technologies is still hampered by bulky instrumentation, complicated procedure, high cost, lengthy testing time, and the need for specialized personnel. Herein, we develop point-of-care upconversion luminescence diagnostics (PULD), and a streamlined smartphone-based portable platform facilitated by a ready-to-use assay for rapid SARS-CoV-2 nucleocapsid (N) gene testing. With the complementary oligo-modified upconversion nanoprobes and gold nanoprobes specifically hybridized with the target N gene, the luminescence resonance energy transfer effect leads to a quenching of fluorescence intensity that can be detected by the easy-to-use diagnostic system. A remarkable detection limit of 11.46 fM is achieved in this diagnostic platform without the need of target amplification, demonstrating high sensitivity and signal-to-noise ratio of the assay. The capability of the developed PULD is further assessed by probing 9 RT-qPCR-validated SARS-CoV-2 variant clinical samples (B.1.1.529/Omicron) within 20 min, producing reliable diagnostic results consistent with those obtained from a standard fluorescence spectrometer. Importantly, PULD is capable of identifying the positive COVID-19 samples with superior sensitivity and specificity, making it a promising front-line tool for rapid, high-throughput screening and infection control of COVID-19 or other infectious diseases.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , COVID-19/diagnóstico , SARS-CoV-2/genética , Sistemas Automatizados de Assistência Junto ao Leito , RNA Viral/genética , Luminescência , Smartphone , Técnicas Biossensoriais/métodos , Sensibilidade e Especificidade
3.
Mater Des ; 223: 111249, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36248181

RESUMO

Multiplexed detection is essential in biomedical sciences since it is more efficient and accurate than single-analyte detection. For an accurate early diagnosis of COVID-19, a multiplexed detection strategy is required to avoid false negatives with the existing gold standard assay. Nb2CTx nanosheets were found to efficiently quench the fluorescence emission of lanthanide-doped upconversion luminescence nanoparticles at wavelengths ranging from visible to near-infrared spectrum. Using this broad-spectrum quencher, we developed a label-free FRET-based biosensor for rapid and accurate detection of SARS-CoV-2 RNA. To target ORF and N genes, two types of oligo-modified lanthanide-doped upconversion nanoparticles can be used simultaneously to identify-two sites in one assay via upconversion fluorescence enhancement intensity measurement with detection limits of 15 pM and 914 pM, respectively. Moreover, with multisite cross-validation, this multiplexed and sensitive biosensor is capable of simultaneous and multicolor analysis of two gene fragments of SARS-CoV-2 Omicron variant within minutes in a single homogeneous solution, which significantly improves the detection efficiency. The diagnosis result via our assay is consistent with the PCR result, demonstrating its application in the rapid and accurate screening of multiple genes of SARS-CoV-2 and other infectious diseases.

4.
Mater Des ; 223: 111263, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36275835

RESUMO

Here, we firstly introduce a detection system consisting of upconversion nanoparticles (UCNPs) and Au nanorods (AuNRs) for an ultrasensitive, rapid, quantitative and on-site detection of SARS-CoV-2 spike (S) protein based on Förster resonance energy transfer (FRET) effect. Briefly, the UCNPs capture the S protein of lysed SARS-CoV-2 in the swabs and subsequently they are bound with the anti-S antibodies modified AuNRs, resulting in significant nonradiative transitions from UCNPs (donors) to AuNRs (acceptors) at 480 nm and 800 nm, respectively. Notably, the specific recognition and quantitation of S protein can be realized in minutes at 800 nm because of the low autofluorescence and high Yb-Tm energy transfer in upconversion process. Inspiringly, the limit of detection (LOD) of the S protein can reach down to 1.06 fg mL-1, while the recognition of nucleocapsid protein is also comparable with a commercial test kit in a shorter time (only 5 min). The established strategy is technically superior to those reported point-of-care biosensors in terms of detection time, cost, and sensitivity, which paves a new avenue for future on-site rapid viral screening and point-of-care diagnostics.

5.
Mater Horiz ; 9(10): 2603-2612, 2022 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-35942798

RESUMO

Braille recognition is of great significance for the visually impaired and blind people to achieve convenient communication and learning. A self-powered Braille recognition sensing system with long-term survivability and phonic function could provide those people with greatly enhanced access to information and thus improve their living quality. Herein, we develop a skin-like self-powered Braille recognition sensor with self-healing, temperature-resistant and stretchable properties, which is further connected with the designed audio system to realize real-time conversion from mechanical stimulus to electrical signals and then to audio signals. The sensor is fabricated using dynamic interaction-based self-healing materials, which constitute an imine bond-based cross-linked polymer for the triboelectric layer and a hydrogen bond-based organohydrogel for the electrode layer. Moreover, the conductive organohydrogel-based electrode is provided with stretchable, anti-freezing, and non-drying properties. Consequently, minimized impact on the output performance of the sensor is found under mechanical impact, harsh environments and large deformation, enabling a long lifespan, high durability, and good stability. The self-powered sensor can be applied in a Braille recognition system, in which the Braille characters can be further decoded and read out. This work shows a reliable and flexible device with promising prospects in information technology.


Assuntos
Pessoas com Deficiência Visual , Eletrodos , Humanos , Iminas , Polímeros , Temperatura
6.
Exploration (Beijing) ; 2(6): 20210216, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36713024

RESUMO

Various infectious viruses have been posing a major threat to global public health, especially SARS-CoV-2, which has already claimed more than six million lives up to now. Tremendous efforts have been made to develop effective techniques for rapid and reliable pathogen detection. The unique characteristics of upconversion nanoparticles (UCNPs) pose numerous advantages when employed in biosensors, and they are a promising candidate for virus detection. Herein, this Review will discuss the recent advancement in the UCNP-based biosensors for virus and biomarkers detection. We summarize four basic principles that guide the design of UCNP-based biosensors, which are utilized with luminescent or electric responses as output signals. These strategies under fundamental mechanisms facilitate the enhancement of the sensitivity of UCNP-based biosensors. Moreover, a detailed discussion and benefits of applying UCNP in various virus bioassays will be presented. We will also address some obstacles in these detection techniques and suggest routes for progress in the field. These progressions will undoubtedly pose UCNP-based biosensors in a prominent position for providing a convenient, alternative approach to virus detection.

7.
ACS Appl Mater Interfaces ; 13(44): 52978-52986, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34699164

RESUMO

Precise morphological control over anisotropic noble metal nanoparticles (ANPs) is one of the key issues in the nano-research field owing to their unique optoelectronic, magnetic, mechanical, and catalytic properties. Although nanostructures fabricated by the directed assembly of adsorbate have been widely demonstrated recently, facile yet universal synthesis of nanocrystal with tunable morphologies, green templates, no seeds, and high yield remains challenging. Herein, we develop a versatile method, allowing for the rapid, one-step, seedless, surfactant-free synthesis of a noble metal nanostructure with tunable anisotropy on MXene in a sequence-dependent manner through a single-DNA molecular regulator. Based on the mild reducibility of MXene and the selective affinity of the DNA to the specific facets in the crystals, oriented aggregations and the growth of ANPs (Au, Pt, Pd) can be achieved and the resulting asymmetric morphology from polyhedrons, or flowers, or nanoplates to dendrites is observed. The ability to align such ANPs on the MXene surface is expected to lead to improved photothermal effect and surface-enhanced Raman scattering. Furthermore, our work makes the fabrication of the ANPs or ANP-MXene heterostructure easier, stimulating further explorations of physical, chemical, and biological applications.

8.
Adv Mater ; 33(32): e2101263, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34176170

RESUMO

2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.

9.
Sustain Cities Soc ; 73: 103133, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36570018

RESUMO

In 2020, the COVID-19 pandemic has spread worldwide. To alleviate this spread, various blockade policies have been implemented in many areas. This has led to a sluggish demand in the world's major economies, sharp drop in the trade index, and negative growth in energy consumption. To formulate a better epidemic prevention policy for urban energy consumption of commercial tourism cities, this study summarizes the major statistics of energy supply and demand before and during the epidemic period based on actual data. The characteristics of energy consumption in different sectors, including hotels, transportation, tourism culture, and public utilities, are then analyzed in detail. Finally, the energy consumption features of commercial tourism cities represented by Macao are compared to those of other typical countries (e.g., Italy, United States, Japan, and Brazil). These analyses demonstrate the impact of COVID-19 on the energy consumption in commercial tourism cities, which provides insights for the government or energy providers to formulate policies to adapt to this pandemic.

10.
Adv Sci (Weinh) ; 7(24): 2001546, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33344117

RESUMO

Recently, 2D niobium carbide MXene has drawn vast attention due to its merits of large surface area, good metallic conductivity, and tunable band gap, making it desirable for various applications. However, the usage of highly toxic fluoride-containing etchant and quite long etching time in the conventional synthesis route has greatly hindered further exploration of MXene, especially restricting its biomedical application. Herein, novel fluoride-free Nb2CT x nanosheets are prepared by a facile strategy of electrochemical etching (E-etching) exfoliation. Taking advantage of rapid aluminum clearance, excellent chemical stability, and biocompatibility from the MXene by E-etching, fluoride-free Nb2CT x /acetylcholinesterase-based biosensors are constructed for phosmet detection with the limit of detection down to 0.046 ng mL-1. The fabricated Nb2CT x -based biosensor is superior to the counterpart from hydrofluoric acid-etched Nb2CT x , indicating that fluoride-free MXene can enhance the enzyme activity and electron transfer in the biosensor. The results prove that the fluorine-free MXene shows promise for developing biosensors with high performance of ultrahigh sensitivity and selectivity. It is highly expected that the fluoride-free MXene as a stable and biocompatible nanoplatform has great potential to be expanded to many other biomedical fields.

11.
Nano Lett ; 20(4): 2747-2755, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32186387

RESUMO

Hybrid perovskite single-crystalline thin films are promising for making high-performance perovskite optoelectronic devices due to their superior physical properties. However, it is still challenging to incorporate them into multilayer devices because of their on-substrate growth. Here, a wet transfer method is used in transferring perovskite single-crystalline films perfectly onto various target substrates. More importantly, large millimeter-scaled single-crystalline films can be obtained via a diffusion-facilitated space-confined growth method as thin as a few hundred nanometers, which are capable of sustaining excellent crystalline quality and morphology after the transferring process. The availability of these crystalline films offers us a convenient route to further investigate their intrinsic properties of hybrid perovskites. We also demonstrate that the wet transfer method can be used for scalable fabrication of perovskite single-crystalline film-based photodetectors exhibiting a remarkable photoresponsivity. It is expected that this transferring strategy would promise broad applications of perovskite single-crystalline films for more complex perovskite devices.

12.
Adv Mater ; 29(43)2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28922491

RESUMO

Light-emitting materials have been extensively investigated because of their widespread applications in solid-state lighting, displays, sensors, and bioimaging. In these applications, it is highly desirable to achieve tunable luminescence in terms of luminescent intensity and wavelength. Here, a convenient physical approach of temporal and remote tuning of light-emitting wavelength and color is demonstrated, which is greatly different from conventional methods. It is shown that by modulating the frequency of magnetic-field excitation at room temperature, luminescence from the flexible composites of ZnS:Al, Cu phosphors induced by the piezophotonic effect can be tuned in real time and in situ. The mechanistic investigation suggests that the observed tunable piezophotonic emission is ascribed to the tilting band structure of the ZnS phosphor induced by magnetostrictive strain under a high frequency of magnetic-field excitation. Furthermore, some proof-of concept devices, including red-green-blue full-color displays and tunable white-light sources are demonstrated simply by frequency modulation. A new understanding of the fundamentals of both luminescence and magnetic-optics coupling is thus provided, while offering opportunities in magnetic-optical sensing, piezophotonics, energy harvesting, novel light sources, and displays.

13.
Adv Mater ; 28(14): 2744-51, 2016 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-26841081

RESUMO

A magnetic-assisted noncontact triboelectric nanogenerator (TENG) is developed by combining a magnetic responsive layer with a TENG. The novel TENG device is applied to harvest mechanical energy which can be converted into electricity and light emissions. This work has potential for energy harvesting, magnetic sensors, self-powered electronics and optoelectronics applications.

14.
Adv Mater ; 27(30): 4488-4495, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26129966

RESUMO

Magnetic-induced luminescence (MIL) is realized via a strain-mediated coupling strategy. MIL composite laminates composed of magnetic actuator and phosphor phases are developed. The MIL performance is tested under low magnetic fields at room temperature. The results provide a novel type of promising luminescent and magnetic material for developing some new concept devices.

15.
Adv Mater ; 27(30): 4487, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29897146

RESUMO

On page 4488, J. Hao and co-workers propose a practical approach to design and synthesize flexible polymer composites composed of a magnetic actuator and phosphor. Magnetic-induced luminescence (MIL) is shown via strain-mediated coupling, which can be modulated under a time-varying low magnetic field at room temperature. A magnetically driven light-emission pattern and a white-light source are demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...